
 

   

 
 

 

MCard DLL API Specification 
Version No 1.9 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

   

Version History 
Date Version Description of Changes Author 

Sep 06, 2002 1.0 Initial version Simon Peter 
Feb 17, 2003 1.1 All references to Infenion have been replaced 

with Infineon. 
Simon Peter 

Feb 20, 2003 1.2 The page references in the contents section 
were corrected 

Simon Peter 

Feb 22, 2003 1.3 Added section that lists the devices supported 
by this API 

Calai Bhoopathi 

May 13, 2003 1.4 Sec 9.1.1 – More description added to  the 
MCardInitialize function.  
Sec 9.2.1 – Description of the McardShutdown 
API has been updated 

Simon Peter 

July 3, 2003 1.6 Added description for a new API 
MCardWaitForCardState 
Sec 9.1.1 – Description of the MCardInitialize 
function has been updated. 
Sec 9.2.1 – Description of the McardShutDown 
API has been updated 

Simon Peter 

January 27, 
2004 

1.7  Added section on SLE4404 card. Modified 
Verify PIN and error code sections to reflect 
changes needed for SLE4404 card. 

Sudharsanan  

April 2,2004 1.8 Updated error codes returned by APIs  
Sec 11.3 – Description of SLE4432/SLE4442 
cards updated. 
Sec 9.3 – Description of McardConnect API has 
been updated. 

Sudharsanan 

June 4, 2004 1.9 Sec 9.4 – Description of McardDisconnect API 
has been updated. 

Vidhya 

 
 
 



 

   

Contents 
1.0 Introduction..............................................................................................................................................................6 

2.0 Reference Documents.........................................................................................................................................6 

3.0 Terms and Abbreviations...................................................................................................................................6 

4.0 Readers Supported...............................................................................................................................................7 

5.0 Introduction to MCard API .................................................................................................................................8 

6.0 MCard API Design Overview.............................................................................................................................9 

7.0 Features of MCard API......................................................................................................................................10 

8.0 MCard APIs Data Types ...................................................................................................................................11 
8.1 MCARDCONTEXT ...........................................................................................................................................11 
8.2 MCARDHANDLE ...............................................................................................................................................11 
8.3 MCARD-FEATURES .......................................................................................................................................11 
8.4 MCARD_MEMORY..........................................................................................................................................12 
8.5 MCARD_PIN .......................................................................................................................................................12 
8.6 MCARD_CR........................................................................................................................................................13 
8.7 MCARD_COUNTER ........................................................................................................................................13 

9.0 APIs exposed by DLL........................................................................................................................................14 
9.1 MCardInitialize ....................................................................................................................................................14 

9.1.1  Description..................................................................................................................................................14 
9.1.2  Description of the Parameters .............................................................................................................14 
9.1.3  Return...........................................................................................................................................................14 
9.1.4  Sample code ..............................................................................................................................................14 

9.2 MCardShutdown................................................................................................................................................15 
9.2.1  Description..................................................................................................................................................15 
9.2.2  Description of the Parameters .............................................................................................................15 
9.2.3  Return...........................................................................................................................................................15 
9.2.4  Sample code ..............................................................................................................................................15 

9.3 MCardConnect ...................................................................................................................................................16 
9.3.1  Description..................................................................................................................................................16 
9.3.2  Description of the Parameters .............................................................................................................16 
9.3.3  Sample code ..............................................................................................................................................16 
9.3.4  Return...........................................................................................................................................................17 

9.4 McardDisconnect...............................................................................................................................................18 
9.4.1  Description..................................................................................................................................................18 
9.4.2  Description of the Parameters .............................................................................................................18 
9.4.3  Return...........................................................................................................................................................18 
9.4.4  Sample code ..............................................................................................................................................18 

9.5 MCardGetAttrib..................................................................................................................................................19 
9.5.1  Description..................................................................................................................................................19 
9.5.2  Description of the Parameters .............................................................................................................19 
9.5.3  Return...........................................................................................................................................................20 
9.5.4  Sample code ..............................................................................................................................................20 

9.6 MCardSetAttrib...................................................................................................................................................21 
9.6.1  Description..................................................................................................................................................21 
9.6.2  Description of the Parameters .............................................................................................................21 
9.6.3  Return...........................................................................................................................................................21 

9.7 McardReadMemory ..........................................................................................................................................23 
9.7.1  Description..................................................................................................................................................23 
9.7.2  Description of the Parameters .............................................................................................................23 
9.7.3  Return...........................................................................................................................................................23 
9.7.4  Sample code ..............................................................................................................................................23 



 

   

9.8 McardWriteMemory ..........................................................................................................................................24 
9.8.1  Description..................................................................................................................................................24 
9.8.2  Description of the Parameters .............................................................................................................24 
9.8.3  Return...........................................................................................................................................................24 
9.8.4  Sample code ..............................................................................................................................................24 

9.9 McardSetMemoryWriteProtection ................................................................................................................25 
9.9.1  Description..................................................................................................................................................25 
9.9.2  Description of the Parameters .............................................................................................................25 
9.9.3  Return...........................................................................................................................................................25 
9.9.4  Sample code ..............................................................................................................................................25 

9.10 McardSetMemoryReadProtection...........................................................................................................26 
9.10.1  Descriptio n of the Parameters .............................................................................................................26 
9.10.2  Return...........................................................................................................................................................26 

9.11 McardReadMemoryStatus .........................................................................................................................27 
9.11.1  Description..................................................................................................................................................27 
9.11.2  Description of the Parameters .............................................................................................................27 
9.11.3  Return...........................................................................................................................................................27 
9.11.4  Sample code ..............................................................................................................................................27 
9.11.5  Status byte Interpretation ......................................................................................................................27 

9.12 McardVerifyPIN .............................................................................................................................................28 
9.12.1  Description..................................................................................................................................................28 
9.12.2  Description of the Parameters .............................................................................................................28 
9.12.3  Return...........................................................................................................................................................28 
9.12.4  Sample code ..............................................................................................................................................28 

9.13 McardChangePIN .........................................................................................................................................29 
9.13.1  Description..................................................................................................................................................29 
9.13.2  Description of the Parameters .............................................................................................................29 
9.13.3  Return...........................................................................................................................................................29 
9.13.4  Sample code ..............................................................................................................................................29 

9.14 McardChallengeResponse........................................................................................................................30 
9.14.1  Description..................................................................................................................................................30 
9.14.2  Description of the Parameters .............................................................................................................30 
9.14.3  Return...........................................................................................................................................................30 
9.14.4  Sample code ..............................................................................................................................................30 

9.15 McardDeductCounter.................................................................................................................................. 31 
9.15.1  Description..................................................................................................................................................31 
9.15.2  Description of the Parameters .............................................................................................................31 
9.15.3  Return...........................................................................................................................................................31 
9.15.4  Sample code ..............................................................................................................................................31 

9.16 McardSetCounter .........................................................................................................................................32 
9.16.1  Description..................................................................................................................................................32 
9.16.2  Description of the Parameters .............................................................................................................32 
9.16.3  Return...........................................................................................................................................................32 

9.17 MCardWaitForCardState ...........................................................................................................................33 
9.17.1  Description..................................................................................................................................................33 
9.17.2  Description of the Parameters .............................................................................................................33 
9.17.3  Return...........................................................................................................................................................33 

10.0  Annex A ...............................................................................................................................................................34 
10.1 MCard API Error Codes .............................................................................................................................34 
10.2 Memory cards supported...........................................................................................................................35 
10.3 Zone IDs ..........................................................................................................................................................36 
10.4 PIN IDs.............................................................................................................................................................36 

11.0  Annex B ...............................................................................................................................................................37 

11.1 Memory card standards ..............................................................................................................................37 
11.2 Memory card protocols ...............................................................................................................................37 

11.2.1  Two-Wire protocol ....................................................................................................................................37 
11.2.2  Three-Wire protocol ................................................................................................................................. 37 
11.2.3  IIC protocol .................................................................................................................................................37 



 

   

11.2.4  Bit level protocol .......................................................................................................................................37 
11.3 Special features in various memory cards...........................................................................................38 

11.3.1  SLE 4432 ....................................................................................................................................................38 
11.3.2  SLE 4442 ....................................................................................................................................................38 
11.3.3  SLE 4418 ....................................................................................................................................................39 
11.3.4  SLE 4428 ....................................................................................................................................................39 
11.3.5  AT24C01A / 02 / 04 / 08 / 16 / 32 / 64 / 128 / 256 / 512.............................................................40 
11.3.6  AT88SC153................................................................................................................................................41 
11.3.7  AT88SC1608 .............................................................................................................................................43 
11.3.8  SLE4406......................................................................................................................................................45 
11.3.9  SLE4436......................................................................................................................................................46 
11.3.10 SLE5536.................................................................................................................................................47 
11.3.11 SLE4404.................................................................................................................................................48 

 
 

(Highlight all the Fields; Go to “Insert” Menu and Choose “Index and Tables” to Update the Contents 
with respect to the Document) 
 
 



 

   

1.0 Introduction 
 
This document is for application developers who want to use the MCard API to interface memory 
cards in their application as well as for those who need to implement memory card DLL for their 
readers. 
 

2.0 Reference Documents 
q ISO/IEC 7816-1 1987(E) Standard  
q ISO/IEC 7816-2 1988(E) Standard  
q ISO/IEC 7816-3 1997(E) Standard  
q ISO/IEC 7816-4 1995(E) Standard  
q ISO/IEC 7816-5 1994(E) Standard  
q ISO/IEC 7816-6 1996(E) Standard  
q ISO/IEC 7816-10 1999(E) Standard 
 

3.0 Terms and Abbreviations 
Term Expansion 
Memory Cards  Synchronous cards mainly used for storage of Data – Phone Cards, 

Health cards, etc. 
Protocol The type of transmission followed by the Memory card – 2 Wire, 3 Wire, 

IIC, etc.  
PIN / Security code The Personal Identification number (Similar to password) given to the 

user of the Memory card for security reasons. 
ISO PIN Contacts The Contacts of the smart card with the interface device as described in 

ISO 7816 (C1 to C8) 
ATR Answer to Reset 
PC/SC The standard of interface for Smart card reader drivers 
Infineon, ATMEL, Xicor, 
Schlumberger 

Some Memory card suppliers in the industry 

SLE4442/32/18/28 Some of the Memory Cards supplied by Infineon 
EEPROM Electrically erasable Programmable Read Only Memory 

 



 

   

4.0 Readers Supported 
 
The following devices from SCM Microsystems support the MCard API: 
 

• SCRx31 Smart Card Reader (Firmware Rev 3.0 and above) 
• SCR333 Internal Smart Card Reader 
• SCR335 USB Smart Card Reader 
• SCR338 Keyboard Smart Card Reader 
• SCR241 PCMCIA Smart Card Reader 
• SPRx32 Pinpad Reader 
• SPR336 Biometric Reader 
• SPR337 Biometric Reader 
• Elektra 331 Smart card Reader 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
  



 

   

 

5.0 Introduction to MCard API 
 
PC/SC has become the standard interface to smartcard readers and cards. Unfortunately, the current 
implementation on Microsoft Windows supports T=0 and T=1 processor cards only. Memory cards 
with their various protocols are unsupported. 
 
However, in some cases, memory card offers cheaper solutions than processor cards, e.g. for storing 
data where not much processing is needed. With special read and write PINs, they can also provide 
protection for this data and with challenge response test, a user authentication is also possible. More 
advanced cards provide decrement-only counters which makes them perfectly suited as secure debit 
cards. 
 
The demand for memory card support has lead to various vendor specific PC/SC driver extensions 
where such cards are presented e.g. as T=0 cards and access becomes possible via special APDUs. 
Another common solution is the support via the SCardControl() function with special parameters. 
Unfortunately, an application has to implement all these different and incompatible methods for each 
reader it wants to use. 
 
The MCard API has been introduced to provide a reader independent memory card interface which is 
still compatible with the existing PC/SC API. Thus existing application require only little modification 
when they also want to support usage memory cards. Once they use the MCard API, they no longer  
need to care about any device specific interfaces. 
 
Furthermore, with the MCard API’s abstract interface it is not necessary for application developers to 
fully care about any memory card specific protocol details. This will he handled internally in the API. 
Of course, a generally understanding of the memory card that is used and its features is still required 
on the part of the application developer. 
 
Understanding this documentation requires background knowledge about the PC/SC API and 
smartcards in general. DLL developers must also have detailed knowledge and datasheets of the 
memory card they want to implement. 
 



 

   

6.0 MCard API Design Overview 
 

PC/SC Ressource Manager

PC/SC Application

PC/SC API,
Reader A
memory card
implementation

PC/SC API,
Reader B
memory card
implementation

PC/SC API,
Reader C
memory card
implementation

 
 
 
The MCard API is placed in between the PC/SC application and the Resource Manager. The 
application can still use all available PC/SC functionality to get the device information or monitor the 
card state. However, for all memory card related functionality it uses the MCard APIs. 
 
 

PC/SC Ressource Manager (WinSCard.DLL)

PC/SC Application

MCard API Module for
Reader B and Reader C

MCard API PC/SC API

Reader B and
Reader C specific
implementation

Reader A specific
implementation

MCard API Module for
Reader A

MCard API (MCardApi.DLL)

MCard API
Module
interface

MCard API
Module
interface

 



 

   

7.0 Features of MCard API 
 

• The most important aspect of the MCard API is its PC/SC compliance. It guarantees complete 
PC/SC compliance and it has been built around the standard PC/SC layer. This enables the 
application developer over MCard API to have full PC/SC compliance. 

 
• The application can also use the memory card handle provided by the MCard API for his 

usual PC/SC calls. This enables the application developer to integrate the application with the 
MCard API.  

 
• The application developer is free from knowing many of the card specific details. A lot of 

those are internally handled by the Mcard API itself. However application developers are 
expected to have a basic understanding of the card that they are interfacing through the 
MCard API. 

 
• The MCard API error codes are built around the standard PC/SC error codes. The errors 

reported back by the MCard APIs clearly indicate the type of error that has occurred. In some 
cases, it gives extra information regarding the error, so that the application developer can 
take the respective corrective action. Also wherever reasonable, the MCard API returns back 
the standard error codes as such. 

 
• The MCard API have been modelled around PC/SC calls wherever possible. This will enable 

the application developers to understand the APIs and their functionality better. 
 



 

   

8.0 MCard APIs Data Types 
 
The following data type are used within the MCard AP I functions. 

8.1 MCARDCONTEXT 
This represents the context of the current MCard API session. 
 
typedef   SCARDHANDLE  MCARDCONTEXT; 
typedef   MCARDCONTEXT*  PMCARDCONTEXT; 
 

8.2 MCARDHANDLE 
This handle identifies the current connection to a card. It is also a valid PC/SC API SCARDHANDLE , so 
it can be used with some PC/SC functions, too. 
 
typedef   SCARDHANDLE  MCARDHANDLE; 
typedef   MCARDHANDLE*  PMCARDHANDLE; 
 

8.3 MCARD-FEATURES 
This structure gives the general features of the memory card. 
 
typedef struct _MCARD_FEATURES { 
   DWORD dwFlags, 
   BYTE bytMemoryZones, 
   BYTE byPINs, 
   BYTE byCounters, 
   BYTE byCRs 
 } MCARD_FEATURES, *PMCARD_FEATURES; 
dwFlags 

RFU 

 
byMemoryZones 

Number of memory zones. The first memory zone has the ID 0x00, the second the ID 0x01 and so on. 
This is to used in functions like MCardReadMemory. 

 
byPINs 

Number of PINs. The first PIN has the ID 0x00, the second the ID 0x01 and so on. This is used in 
functions like MCardVerifyPin . 

 
byCounters 

Number of counters. The first counter has the ID 0x00, the second the ID 0x01 and so on. This is 
used in functions like MCardSetCounter. 

bCRs 

Number of challenge -response tests. The first test in this array has the ID 0x1, the second the ID 0x2 
and so on in functions like MCardChallengeResponse . 



 

   

8.4 MCARD_MEMORY 
This  structure contains details about a memory zone of a memory card. 
 
typedef struct _MCARD_MEMORY { 
   DWORD dwFLags, 
   DWORD dwSize 
 } MCARD_MEMORY, *PMCARD_MEMORY;  
 
dwFlags 

RFU 

 
dwSize 

This is the size in byte of a memory zone. 

 
 
 

8.5 MCARD_PIN 
This structure contains details about a PIN of a memory card. 
 
typedef struct _MCARD_PIN { 
   DWORD dwFlags, 
   BYTE bySize, 
   BYTE byRetries  
 } MCARD_PIN, *PMCARD_PIN; 
 
dwFlags 

RFU 

 

bySize 

This is the size of this PIN in byte. 

 
byRetries 

Number of trials left for this PIN. 

 
 



 

   

8.6 MCARD_CR 
This structure contains details about a challenge response authentication details supported by a 
memory card. 
 
typedef struct _MCARD_CR { 
   DWORD dwFlags, 
   DWORD dwChallengeLen, 
   DWORD dwResponseLen, 
   BYTE byRetries  
 } MCARD_CR, *PMCARD_CR; 
 
dwFlags 

RFU 

 
dwChallengeLen 

Length of challenge in bytes. 

 
dwResponseLen 

Length of respones in bytes. 

 

byRetries 

Number of trials left for this Challenge Response sequence. 
 
 
 

8.7 MCARD_COUNTER 
This structure contains details about a specific counter on the memory card. 
 
typedef struct _MCARD_COUNTER { 
   DWORD dwFLags  
   BYTE bySize; 
   DWORD dwUnits 
 } MCARD_COUNTER, *PMCARD_COUNTER; 
 
dwFlags 

RFU 

 
bySize 

Length of counter in bytes. 

 
dwUnits 

Units left in the counter. 

 
 



 

   

9.0 APIs exposed by DLL 

9.1 MCardInitialize 

9.1.1 Description 
This API has to be called by the application before any other memory card API. This API can be 
called with or without a memory card inserted into the reader. This API is used to set the reader into 
the memory card mode of operation. Calling the MCardInitialize function for the second time without 
calling the MCardShutdown function will lead to failure. 

  

LONG MCardInitialize ( 
        IN SCARDCONTEXT hScardContext, 
        IN LPCTSTR szReaderName, 
        OUT PMCARDCONTEXT phMCardContext, 
        OUT PDWORD pdwDllVersion, 
     ); 
 

9.1.2 Description of the Parameters 
 

• The hScardContext is the context handle obtained by the SCardEstablishContext by the 
application with the Smart Card Resource Manager. 

 
• The szReaderName  is the reader name as given to the SCardConnect. 

 
• The phMCardContext  is a unique context that is returned by the DLL. This context is to 

identify the application and is not of any significance to the application developer, other than 
that it has to be used with the MCardShutdown API. However the application developer has to 
pass a valid pointer for this parameter to the MCardInitialize call. 

 
• The pdwDllVersion will be filled with the current version of the DLL. This is also for reference 

to the application developer so that he can co rrelate it with the memory cards supported by 
the DLL. 

9.1.3 Return 
 
MCARD_S_SUCCESS The DLL successfully initialized 
SCARD_E_NO_SERVICE The resource manager is not running   

9.1.4 Sample code 
/* ScardContext is the context obtained through SCardEstablishContext */ 
MCARDCONTEXT  hMCardContext; 
DWORD   dwDLLVersion; 
char    szReader[] = “CCID SCM Microsystems Reader”; 
LONG    lReturn; 
 
lReturn = MCardInitialize ( 
ScardContext, 
szReader, 
&hMCardContext ,  
&dwDLLVersion 
); 



 

   

9.2 MCardShutdown 
 

9.2.1 Description 
This API invalidates the DLL context given during a MCard Initialize. It also restores the reader from 
memory card mode to the mode it was when MCardInitialize was called.  
 
LONG MCardShutdown ( 
       IN MCARDCONTEXT hMCardContext 
     ); 
 
 

9.2.2 Description of the Parameters 
• hMCardC ontext is the DLL context supplied to the application during MCardInitialize 

 

 

9.2.3 Return 
 
MCARD_S_SUCCESS The context successfully invalidated 
 
 

9.2.4 Sample code 
LONG lReturn; 
 
lReturn = MCardShutDown (hMCardContext); 
 
/* where hMCardContext is the context got in MCardInitialize */ 

 



 

   

9.3 MCardConnect 

9.3.1 Description 
This API is similar to the standard SCardConnect except that it connects to a memory card. The API  
actually performs a SCardConnect internally. The card handle MCARDHANDLE is returned to the 
application developer which is the standard SCARDHANDLE. The application developer can use this 
handle for further communication with the MCard APIs and also to perform card tracking and other 
such routines through the Smart card resource manager. 
 
Disclaimer 
The MCardConne ct in the “intelligent mode” performs DESTRUCTIVE tests with the card. This API 
during its process of finding the card type writes / reads back the data from the card. Though the DLL 
restores the card’s original state once the identification process in ove r, neither the power to the card 
be interrupted, nor the card disturbed during the process. Since the process is prone to damage the 
card, application developers are advised to go for intelligent mode only when such a need arises. 
 
 
LONG MCardConnect  ( 
       IN MCARDCONTEXT hMCardContext, 
       IN DWORD dwConnectMode, 
       IN BYTE  byCardType, 
       OUT PMCARDHANDLE phMCard 
     ); 
 

9.3.2 Description of the Parameters 
 

• hMCardContext is the DLL context supplied to the application during MCardInitialize 
 
• The dwConnectMode chooses between the INTELLIGENT mode (read disclaimer  above) 

and FORCED_MODE mode, in which the application has to identify the card type to the DLL. 
 

• If the dwConnectMode  is set as INTELLIGENT mode then byCardType  is ignored. But if the 
dwConnectMode is set as FORCED_MODE, then the card type is passed in this. 

 
• The DLL returns phMCard on successful connection to the memory card. This memory card 

handle will have to be supplied in all further calls to the DLL like MCardReadMemory, 
MCardWriteMemory etc. 

9.3.3 Sample code 

 

The intelligent card identification of the DLL is used. 
 
DWORD   dwConnectMode = INTELLIGENT_MODE 
BYTE    byCardType = 0x00; 
MCARDHANDLE hMCard; 
LONG    lReturn; 
 
lReturn =  
MCardConnect ( 
       hMCardContext,    /* Obtained from MCardInitialize */ 
       dwConnectMode, 
       byCardType, 
       &hMCard 
); 



 

   

 
The card type is forced from the application. 
 
 
LONG lReturn; 
MCARDHANDLE hMCard; 
DWORD dwConnectMode = FORCED_MODE; 
BYTE byCardType = MCARDTYPE_SLE4432;    /* A list of all supported cards with  
           values is provided in Annex A  */ 
lReturn   =  
MCardConnect ( 
       hMCardContext,     /* Obtained from MCardInitialize */ 
       dwConnectMode, 
       byCardType, 
       &hMCard 
); 

 
 

9.3.4 Return 
 
MCARD_S_SUCCESS   The memory card is successfully connected to. 
MCARD_E_UNKNOWN_CARD              The memory card could not be identified.  
MCARD_E_NOT_INITIALIZED               MCardInitialize was not called successfully before this. 

 MCARD_W_REMOVED_CARD            Card has been removed fr om the reader 

 
 
Note: 
McardConnect will return the error code MCARD_E_NOT_INITIALIZED if the reader is not in Memory 
card mode. 
  

 



 

   

9.4 McardDisconnect 
 

9.4.1 Description 
This API is similar to the SCardDisconnect. It disconnects a previously connected memory card as per 
the requested disposition. 
 
 
LONG McardDisconnect ( 
       IN MCARDHANDLE hMCard, 
       IN DWORD dwDisposition 
     ); 
 

9.4.2 Description of the Parameters 
 

• hMCard is the memory card handle obtained in the MCardConnect call. 
 
• dwDisposition The type of disconnection similar to ScardDisconnect’s disposition parameter. 

This parameter is no longer used and may be set to a default value of 0. 

 

9.4.3 Return 
 
MCARD_S_SUCCESS   The memory card is successfully connected to. 
 
 

9.4.4 Sample code 

 

/* hMCard is the handle obtained in the call to MCardInitialize */ 
 
LONG lReturn; 
 
lReturn   =  
MCardDisconnect( 
       hMCard, 
       MCARD_EJECT_CARD 
); 

 



 

   

9.5 MCardGetAttrib 
 

9.5.1 Description 
This API returns the various attributes of the memory card and also certain configurations of the 
DLL/reader. The data structures returned by the DLL for each attribute are specified in the Data 
Structures section. 
 
 
LONG McardGetAttrib ( 
       IN MCARDHANDLE hMCard, 
       IN DWORD dwAttrId, 
       OUT LPBYTE pbAttr, 
       IN OUT LPDWORD pcbAttrLen 
     ); 
 

9.5.2 Description of the Parameters 
 

• hMCard  is the card handle of the card that was connected to 
• dwAttrId indicates the attribute requested. It may be 

 
dwAttrib Value 
MCARD_ATTR_TYPE 0x00 
MCARD_ATTR_PROTOCOL 0x01 
MCARD_ATTR_FEATURES 0x02 
MCARD_ATTR_MEMOR Y 0x03 
MCARD_ATTR_PIN  0x04 
MCARD_ATTR_CR 0x05 
MCARD_ATTR_COUNTERS 0x06 
MCARD_ATTR_CLOCK 0x07 
MCARD_ATTR_BIT_ORDER 0x08 
MCARD_ATTR_CONFIGURATION 0x09 

 
o The MCARD_ATTR_TYPE will return the memory card type. 
 
o The MCARD_ATTR_PROTOCOL will return the protocol of the memory card. 

 
o The MCARD_ATTR_FEATURES will return the structure MCARD_FEATURES i.e 

§ DWORD  dwFlags; 
§ BYTE  byMemoryZones; 
§ BYTE  byPINs; 
§ BYTE  byCounters; 
§ BYTE  byCRs; 

 
o The MCARD_ATTR_MEMORY will return the MCARD_MEMORY structure i.e  

§ DWORD dwFLags; 
§ DWORD dwSize; 

 
o The MCARD_ATTR_PIN will return a the structure MCARD_PIN i.e 

§ DWORD dwFlags; 
§ BYTE  bySize; 
§ BYTE  byRetries; 
 



 

   

o The MCARD_ATTR_CR will return the structure MCARD_CR i.e 
§ DWORD dwFlags; 
§ DWORD dwChallengeLen; 
§ DWORD dwResponseLen; 
§ BYTE  byRetries; 
 

o The MCARD_ATTR_COUNTERS will return the structure MCARD_COUNTER i.e 
§ DWORD dwFLags; 
§ BYTE  dwSize; 
§ DWORD dwUnits; 
 

o The MCARD_ATTR_CLOCK returns the  Ton = Toff that is used within the reader to 
interface with the memory card. 

 
o The MCARD_ATTR_BIT_ORDER returns the Bit order that is used within the reader 

to interface with the memory card. 
§ LSB (Value =  0x00) – if the first bit sent/received has been forced by the 

application developer to be considered as  the least significant bit. 
§ MSB (Value = 0x01) – if the first bit sent/received has been forced by the 

application developer to be considered as  the most significant bit.  
§ DEFAULT (Value = 0xFF) – if the application developer has not forced any bit 

significance and the memory card reader intelligently identifies the bit 
significance based on the protocol used. 

 
o The CONFIGURATION attribute has been reserved for future use. 

 
• The contents of pbAttr will contain the respective structure(s) or value. 
• The contents of pbAttrLen will contain the size of the structur e returned in pbAttr (if a 

structure is returned) or the number of bytes (if a value is returned). 
 

9.5.3 Return 
 
MCARD_S_SUCCESS   Successfully got the attribute 
MCARD_E_NOT_IMPLEMENTED  The MCardGetAttrib not implemented for this attribute 

 

9.5.4 Sample code 

 

/* hMCard is the handle obtained in the call to MCardInitialize */ 
 
MCARD_FEATURES MCardFeatures; 
DWORD dwLen; 
LONG lReturn; 
 
lReturn  =  
MCardGetAttrib ( 

hMCard, 
 MCARD_ATTR_FEATURES, 
  (unsigned char *) &MCardFeatures, 
 &dwLen 
); 
 
/* This will return the memory card features in the structure and in the dwLen it returns the  
sizeof (MCARD_FEATURES). */ 

 



 

   

9.6 MCardSetAttrib 
 

9.6.1 Description 
This API will set the requested value to the attribute of interest. The clock rate has been set 
considering all the cards that have been supported by the DLL. If the application developer is 
comfortable with other values he can use this API to change it. 
 
This API is also used to force the bit ordering to LSB / MSB or set it back to DEFAULT in which case 
the reader will intelligently de cide the bit ordering. 
 
 
LONG McardSetAttrib ( 
       IN MCARDHANDLE hMCard, 
       IN DWORD dwAttrId, 
       IN LPBYTE pbAttr, 
       IN DWORD cbAttrLen 
     ); 
 
 

9.6.2 Description of the Parameters 
 

• The hMCard is the memory card handle got during a valid MCardConnect 
• The dwAttrib can take one of these values  

 
dwAttrib Value 
MCARD_ATTR_CLOCK 0x07 
MCARD_ATTR_BIT_ORDER 0x08 

 
o The MCARD_ATTR_CLOCK  attribute is used to set the Ton=Toff used for interfacing 

the memory card in the reader. 
 
o The MCARD_ATTR_BIT_ORDER  attribute can be set to one of these 

§ LSB (Value =  0x00) – if the first bit sent/received needs to be forced by the 
application developer to be considered as  the least significant bit. 

§ MSB (Value = 0x01) – if the first bit sent/received needs to be forced by the 
application developer to be considered as  the most significant bit.  

§ DEFAULT (Value = 0xFF) – if the application developer does not force any bit 
significance and accepts the memory card reader’s intelligent identification of  
the bit significance based on the protocol used. 

 
• The pbAttr contains the value to be set to the attribute. 

 
• The cbAttrLen contains the number of bytes contained in pbAttr 

 

9.6.3 Return 
 
MCARD_S_SUCCESS   Successfully got the attribute 
MCARD_E_READ_ONLY_ATTRIBUTE   The MCardGetAttrib not implemented for this attribute



 

   

Sample code 

 

/* hMCard is the handle obtained in the call to MCardInitialize */ 
 
BYTE byClock= 0x01; 
LONG lReturn; 
 
lReturn  =  
MCardSetAttrib ( 

hMCard, 
 MCARD_ATTR_CLOCK, 
  &byClock, 

1 
); 
 
/* This will set the clock to 1 microsecond and is advisable for IIC cards which can work in this clock */ 

 



 

   

9.7 McardReadMemory 

9.7.1 Description 
This API will read the requested bytes from the memory card. The buffer to store the bytes read is 
supplied by the application layer. The address roll  over, reading beyond the available memory and 
other similar considerations are automatically taken care by the DLL and the appropriate error codes 
returned. 
 
 
LONG MCardReadMemory ( 
       IN MCARDHANDLE hMCard, 
       IN BYTE bMemZone, 
       IN DWORD dwOffset, 
       IN LPBYTE pbReadBuffer, 
       IN OUT LPDWORD pbReadLen 
     ); 
 

9.7.2 Description of the Parameters 
 

• hMCard is the memory card handle returned on a successful call to MCardConnect 
• bMemZone indicates the zone from which the data has to be read. For details on how the 

various memory cards are divided into zones refer Annex A. 
• dwOffset  indicates the offset from which the reading has to take place. 
• pbReadBuffer  is the buffer supplied by the application layer where the bytes read are to be 

stored. 
• pbReadLen is the number of bytes to be read. 

 

9.7.3 Return 
 
MCARD_S_SUCCESS  Successfully read all data 
MCARD_W_NOT_ALL_DATA_READ   Could not read all data from card 
MCARD_W_PIN_VERIFY_NEEDED  Reading access requires a PIN verification. 
MCARD_E_INVALID_MEMORY_RANGE  Offset + length greater than size of the zone 
MCARD_E_INVALID_MEMORY_ZONE_ID The specified memory zone ID is invalid. 
MCARD_W_CARD_REMOVED                    Card has been removed from the reader. 

9.7.4 Sample code 
/* hMCard is the handle obtained in the call to  MCardInitialize */ 
 
LONG  lReturn; 
BYTE   abyData [20]; 
DWORD  dwLen = 20; 
 
lReturn =  
MCardReadMemory (  /* Reading 20 bytes from offset 0x80 in memory zone 0 */f 

hMCard, 
 0, 
 0x80, 
 abyData, 
 &dwLen 
); 
 



 

   

 

9.8 McardWriteMemory 
 

9.8.1 Description 
This API is used to  write data into the card’s memory. The DLL internally performs a read back for 
every write to verify whether the bytes have actually been written. Certain cards have permanant write 
protection mechanism and attempting a write on these bytes will fail. 
 
 
LONG McardWriteMemory ( 
       IN MCARDHANDLE hMCard, 
       IN BYTE bMemZone, 
       IN DWORD dwOffset 
       IN LPBYTE pbWriteBuffer, 
       IN OUT LPDWORD pcbWriteLen 
     ); 

9.8.2 Description of the Parameters 
 

• hMCard is the memory card handle returned on a successful call to MCardConnect 
• bMemZone indicates the zone from which the data has to be written. For details on how the 

various memory cards are divided into zones refer Annex A. 
• dwOffset  indicates the offset from which offset the writing has to begin. This offset can be 

anywhere, even between pages, as the DLL will internally . 
• pbWriteBuffer  is the buffer supplied by the application layer where the bytes to be written are 

stored. 
• pcbWriteLen contains the number of bytes to be write. 

 

9.8.3 Return 
MCARD_S_SUCCESS  Successfully writen all data 
MCARD_W_PIN_VERIFY_NEEDED  Writing access requires a PIN verification. 
MCARD_E_INVALID_MEMORY_RANGE  Offset + length greater than size of the zone 
MCARD_E_INVALID_MEMORY_ZONE_ID The specified memory zone ID is invalid. 
MCARD_E_ERASURE_NEEDED  Write not possible erasure to be done first 
MCARD_W_PROTECTED_AREA  Cannot write into Protected area 
MCARD_W_CARD_REMOVED                    Card has been removed from the reader. 

9.8.4 Sample code 
/* hMCard is the handle obtained in the call to MCardInitialize */ 
 
LONG  lReturn; 
BYTE   abyData [10] = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A}; 
DWORD  dwLen = 10; 
 
lReturn =  
MCardWriteMemory (  /* Writes the 10 values in the buffer abyData to offset 0x80 in  
     memory zone 0  */ 

hMCard, 
 0, 
 0x80, 
 abyData, 
 &dwLen 
); 



 

   

 

9.9 McardSetMemoryWriteProtection 
 

9.9.1 Description 
This API is used to set the write protection that is available in a few memory cards. This feature may 
permanently write protect the bytes. The application developer has to make sure of the parameters 
before calling this API. 
 
 
LONG McardSetMemoryWriteProtection  (  
       IN MCARDHANDLE hMCard, 
       IN BYTE bMemZone, 
       IN DWORD dwOffset, 
       IN OUT LPDWORD pbcLen 
     ); 
 

9.9.2 Description of the Parameters 
 

• hMCard is the memory card handle returned on a successful call to MCardConnect 
• bMemZone indicates the zone from which the data has to be protected. For details on how 

the various memory cards are divided into zones refer Annex A.  
• dwOffset  indicates the offset from which offset the protection has to begin.  
• pcbLen contains the number of bytes to be write protected. 

 

9.9.3 Return 
 
MCARD_S_SUCCESS  Successfully protected all data 
MCARD_W_PIN_VERIFY_NEEDED  Protection access requires a PIN verification. 
MCARD_E_INVALID_MEMORY_RANGE  Offset + length greater than size of the zone 
MCARD_E_INVALID_MEMORY_ZONE_ID The specified memory zone ID is invalid. 
MCARD_W_CARD_REMOVED                    Card has been removed from the reader. 
 

9.9.4 Sample code 
/* hMCard is the handle obtained in the call to MCardInitialize */ 
 
LONG  lReturn; 
DWORD  dwLen = 5; 
 
lReturn =  
MCardSetMemoryWriteProtection ( 

hMCard, 
 0x00, 
 0x10, 
 &dwLen 
); 
 
/* This sample shows how to write protect 5 bytes, starting from offset 0x10 in memory zone 0 */ 
 
 
Disclaimer 
The write protection feature can permanantly protect the data from being altered again. So 
application developers must be sure enough before calling this API. 



 

   

9.10 McardSetMemoryReadProtection 
 
Description 
This API is used to set the read protection available in certain cards.  
 
 
LONG McardSetMemoryReadProtection ( 
       IN MCARDHANDLE hMCard, 
       IN BYTE bMemZone, 
       IN DWORD dwOffset, 
       IN OUT LPDWORD pbcLen 
     ); 
 

9.10.1 Description of the Parameters 
 

• hMCard is the memory card handle returned on a successful call to MCardConnect 
• bMemZone indicates the zone from which the data has to be protected. For details on how 

the various memory cards are divided into zones refer Annex A.  
• dwOffset  indicates the offset from which offset the protection has to begin.  
• pcbLen contains the number of bytes to be write protected. 

 

9.10.2 Return 
 
MCARD_E_NOT_IMPLEMENTED  Since at present the DLL does not support such cards this 

API has been left unimplemented. 
 
 
 
 
 
 



 

   

9.11 McardReadMemoryStatus 
 

9.11.1 Description 
This API will report the read/write protection status of the bytes. 
 
 
 
LONG McardReadMemoryStatus ( 
       MCARDHANDLE hMCard, 
       IN BYTE bMemZone, 
       IN DWORD dwOffset, 
       OUT PBYTE pbBuffer, 
       IN OUT LPDWORD pcbLen 
     ); 
 

9.11.2 Description of the Parameters 
 

• hMCard is the memory card handle returned on a successful call to MCardConnect 
• bMemZone indicates the for which the status is to be known. For details on how the various 

memory cards are divided into zones refer Annex A. 
• dwOffset  indicates the offset from which the status has to be reported 
• pbBuffer is the buffer supplied by the application layer where the status i to be returned. 
• pcbLen contains the number of bytes whose status is to be known. 

 

9.11.3 Return 
 
MCARD_S_SUCCESS  Successfully read the status 
MCARD_W_CARD_REMOVED                    Card has been removed from the reader. 
  

9.11.4 Sample code 
/* hMCard is the handle obtained in the call to MCardInitialize */ 
LONG  lReturn; 
BYTE   abyData [10]; 
DWORD  dwLen = 10; 
 
lReturn =  
MCardReadMemoryStatus (   /* Gets the status of 10 bytes from offset 0x80 in zone 0 */ 

hMCard, 
 0, 
 0x80, 
 abyData, 
 &dwLen 
); 
 

9.11.5 Status byte Interpretation 
• Bit 7  - Bit 1 : RFU. 
• Bit 0 (LSB)  : Write protection bit set for this data byte. 

 



 

   

9.12 McardVerifyPIN 
 

9.12.1 Description 
This API is used to verify the PIN from th e user. This call has to be used to get write/read access to 
the card/zones. 
 
 
LONG MCardVerifyPIN ( 
       IN MCARDHANDLE hMCard, 
       IN BYTE bPinNumber, 
       IN PBYTE pbBufferWithPIN, 
       IN BYTE pbcLen 
     ); 
 

9.12.2 Description of the Parameters 
 

• hMCard is the memory card handle returned on a successful call to MCardConnect 
• bPinNumber  indicates the PIN which is to be verified 
• pbBufferWithPIN  is the buffer containing the bytes of the PIN  
• pcbLen contains the number of bytes of the PIN  

 

9.12.3 Return 
 
MCARD_S_SUCCESS Successfully verified the PIN. 
MCARD_E_INVALID_PIN_ID  The specified PIN ID is invalid. 
MCARD_W_PIN_VERIFY_FAILED The PIN verification failed. 
MCARD_W_NO_PIN_ATTEMPTS_LEFT No PIN retries left in the card. 
MCARD_W_CARD_REMOVED                 Card has been removed from the reader. 
MCARD_E_BITORDER_CHANGED Bit Order has been changed from default. 
MCARD_E_NOT_IMPLEMENTED  This Feature is not implemented in the DLL. 

9.12.4 Sample code 
/* hMCard is the handle obtained in the call to MCardInitialize */ 
LONG  lReturn ; 
BYTE   PINbuffer [3] = {0x73, 0x58, 0xDE}; 
 
 
lReturn =  
MCardVerifyPIN (  /* Verifies the PIN for SLE4442 */ 

hMCard, 
 0, 
 PINbuffer, 
 3 
); 
Important Note: 
The verify PIN option in the case of SLE4404 cards on Memory code area (PIN1) will erase the 
entire contents of user memory and also reset a bit in Memory counter area that results in the  
decrement of the no. of times the user area can be erased. Even an incorrect PIN1 entry will 
reset the bit in memory counter, decreasing the no. of times the user area can be erased. 
 
Please ensure that before verifying PIN1 of SLE4404 card PIN0 is verified. 
 



 

   

9.13 McardChangePIN 
 

9.13.1 Description 
The application will use this API to change the current PIN to a new PIN.  
 
 
LONG MCardChangePIN ( 
       IN MCARDHANDLE hMCard, 
       IN BYTE bPinNumber, 
       IN PBYTE pbBufferWithOldPIN, 
       IN BYTE cbOldLen 
       IN PBYTE pbBufferWithNewPIN, 
       IN BYTE cbNewLen 
     ); 
 
 

9.13.2 Description of the Parameters 
 

• hMCard is the memory card handle returned on a successful call to MCardConnect 
• bPinNumber  indicates the PIN which is to be changed 
• pbBufferWithOldPIN is the buffer containing the bytes of the old PIN 
• cbOldLen contains the number of bytes of the new PIN 
• pbBufferWithNewPIN  is the buffer containing the bytes of the old PIN  
• cbNewLen contains the number of bytes of the new PIN  

 
 

9.13.3 Return 
 
MCARD_S_SUCCESS Successfully changed the PIN. 
MCARD_E_INVALID_PIN_ID  The specified PIN ID is invalid. 
MCARD_W_PIN_VERIFY_FAILED The PIN verification failed. 
MCARD_W_NO_PIN_ATTEMPTS_LEFT No PIN retries left in the card. 
MCARD_W_CARD_REMOVED                  Card has been removed from the reader. 
MCARD_E_NOT_IMPLEMENTED  The feature is not implemented in the DLL. 
 

9.13.4 Sample code 
/* hMCard is the handle obtained in the call to MCardInitialize */ 
LONG  lRetu rn; 
BYTE   oldPINbuffer [3] = {0x73, 0x58, 0xDE}; 
BYTE  newPINbuffer [3]={0x3D, 0xF3, 0x25}; 
 
lReturn =  
MCardChangePIN (  /* Changes the PIN for SLE4442 */ 

hMCard, 
 0, 
 oldPINbuffer, 
 3, 
 newPINbuffer, 
 3 
); 

 



 

   

 

9.14 McardChallengeResponse 
 

9.14.1 Description 
This API implements the challenge response sequence supported by some secure memory cards. 
Provision is provided to select the challenge ID for a challenge-response sequence. 
 
 
LONG McardChallengeResponse  ( 
       IN MCARDHANDLE hMCard, 
       IN BYTE bChallengeID, 
       IN PBYTE pbChallengeBuffer, 
       IN BYTE cbChallengeLen, 
       OUT PBYTE pbResponseBuffer, 
       OUT PBYTE cbResponseLen 
     ); 
 
 

9.14.2 Description of the Parameters 
 

• hMCard is the memory card handle returned on a successful call to MCardConnect 
• bChallengeID  indicates the challenge ID for the current authentication. 
• pbChallengeBuffer  is the buffer containing the challenge bytes 
• cbChallengeLen contains the number of bytes in the challenge buffer 
• pbResponseBuffer  is the buffer where the response from the card will be stored 
• cbResponseLen contains the number of bytes in the returned response buffer 

 

9.14.3 Return 
 
MCARD_S_SUCCESS Successfully writen all data 
MCARD_E_INVALID_CHAL_RESP_ID  The specified challenge ID is invalid. 
MCARD_E_CHAL_RESP_FAILED The challenge response sequence failed. 
MCARD_W_NO_CR_ATTEMPTS_LEFT No challenge response retry left. 
MCARD_W_CARD_REMOVED                   Card has been removed from the reader. 
 

9.14.4 Sample code 
/* hMCard is the handle obtained in the call to MCardInitialize */ 
LONG  lReturn; 
BYTE   ChallengeBuffer [8] = {0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07}; /* Usually a  
              random number */ 
BYTE  ResponseBuffer [3]; 
  
lReturn =  
MCardChallengeResponse (   /* Authentication in SLE4436 */ 

hMCard, 
 0,    /* Authentication w ith Key 1 */  
 ChallengeBuffer, 
 8, 
 ResponseBuffer, 
 3 
); 



 

   

 

9.15 McardDeductCounter 
 

9.15.1 Description 
 
This function is used to decrement a counter on the card. (SLE4406/SLE4436/SLE5536 only). 
 
 
 
LONG MCardDeductCounter( 
    IN MCARDHANDLE hMCard, 
    IN BYTE bCounterID, 
    IN DWORD dwUnits 
    ); 

 

9.15.2 Description of the Parameters 
 

• hMCard is the memory card handle returned on a successful call to MCardConnect 
• bCounterID indicates the counter ID where the decrement will be performed 
• dwUnits is the number of units to be decremented. 
 
 

9.15.3 Return 
 
MCARD_S_SUCCESS Successfully writen all data 
MCARD_W_CARD_REMOVED                  Card has been removed from the reader. 
 
 

9.15.4 Sample code 
/* hMCard is the handle obtained in the call to MCardInitialize */ 
LONG  lReturn; 
 
lReturn =  
MCardDeductCounter(   /* To decrement 5 units from the counter in SLE4436 */ 

hMCard, 
 0,   
 5 
); 
 
       
Disclaimer 
The decrement option in SLE4406, SLE4436 and SLE5536 cause permenant decrement in the 
value of the counter. Values once decremented are irreversibly lost. So the application 
developer has to use this API only after through understanding of the purpose. 



 

   

9.16 McardSetCounter 
 

9.16.1 Description 
This function is used to set the counter on the card to some defined bit pattern.  
 
 
LONG MCardSetCounter( 
    IN MCARDHANDLE hMCard, 
    IN BYTE bCounterID, 
    IN PBYTE pbCounter,  
    IN BYTE cbCounterLen 
    ); 
 
Explanation of the Parameters 
Argument Type Meaning 
hMCard MCARDHANDLE  The card handle of the card that was connected to  
bCounterID  BYTE The counter to be decremented 
pbCounter PBYTE  Buffer containing the target bit pattern for the counter 
cbCounterLen BYTE Number of bytes forming the counter 

 

9.16.2 Description of the Parameters 
 

• hMCard is the memory card handle returned on a successful call to MCardConnect 
• bCounterID indicates the counter ID where the values will be set 
• pbCounter is the buffer containing the bit pattern to be stored in the counter. 
• pbCounterLen is the length in bytes of the counter. 
 

9.16.3 Return 
 
MCARD_E_NOT_IMPLEMENTED  At present the DLL does not support this API 
 



 

   

9.17 MCardWaitForCardState  
 

9.17.1 Description 
This function is used to monitor the card state from the application.  
 
 
LONG MCardWaitForCardState( 
    IN     MCARDCONTEXT hMCardContext, 
    IN     DWORD        dwExpectedCardState, 
    OUT DWORD*       pdwCardState, 
    IN    DWORD         dwTimeOut 
    ); 
 
Explanation of the Parameters 
Argument Type Meaning 
hMCardContext MCARDCONTEXT  The context given during MCardInitialize  
dwExpectedCardState DWORD The card state that is expected 
pdwCardState PDWORD The actual card state 
dwTimeOut DWORD The maximum waiting time for the expected state. 

 

9.17.2 Description of the Parameters 
 

• hMCardContext is the memory card context returned on a successful call to MCardInitialize 
• dwExpectedCardState  indicates the expected card state. 

o SCARD_STATE_PRESENT 
o SCARD_STATE_EMPTY 

• pdwCardState is the buffer containing the bit pattern to be stored in the counter. 
o SCARD_STATE_PRESENT 
o SCARD_STATE_EMPTY 
 

  NOTE: These a bit flags, so the app must check if the bits are 
  set.  
  WRONG:  if (SCARD_STATE_PRESENT == *pdwState) { ... }    

 RIGHT:  if ((*pdwState) & SCARD_STATE_PRESENT) { ... } 
 

• dwTimeOut is the maximum waiting time for the expected state that the DLL should wait 
before returning the current state. 

o 0 – return immediately 
o INFINITE – return only when the expected state is reached 
o Any other value – timeout in milliseconds. 

 

9.17.3 Return 
 
MCARD_E_INVALID_PARAMETER One of the parameters is invalid 
MCARD_E_INTERNAL_ERROR An internal error has occurred in the DLL 
MCARD_W_ABORTED  The operation was aborted by a call to MCardShutdown 
MCARD_W_TIMEOUT Timeout occurred while waiting for expected state 
 



 

   

10.0 Annex A 

10.1 MCard API Error Codes  
 
The MCard API can return the standards Windows error codes ERROR_xxx and the smart card error 
codes SCARD_xxx. Both are described in the Windows SDK files WINERROR.H and SCARDERR.H. 
In addition, there are MCARD_xxx error codes to identify the source of an error more precisely. The 
base value for MCARD_xxx error codes is 0x90100800, which is in fact the SCARD_xxx base value 
with the COSTOMER_CODE_FLAG set and an additional offset of 0x800 added.  
There are two groups of MCARD_xxx error codes. The MCARD_E_xxx codes representing serious 
errors and the MCARD_W_xxx codes which are warnings. It’s up to the application to decide whether 
those warning are really error.  
 

Error Code Meaning 

MCARD_S_SUCCESS Successful operation 

MCARD_E_INTERNAL_ERROR An internal error has occurred 

MCARD_E_NOT_IMPLEMENTED API / functionality not implemented 

MCARD_E_NOT_INITIALIZED MCardInitialize not successfully called 

MCARD_E_INCOMPATIBLE_READER The reader is incompatible with the DLL 

MCARD_E_UNKNOWN_CARD Card could not be identified 

MCARD_E_BUFFER_TOO_SMALL The buffer for return data is too small 

MCARD_E_INVALID_PARAMETER One or more parameters are invalid 

MCARD_E_READ_ONLY_ATTRIBUTE  This attribute can only be read. 

MCARD_E_INVALID_HANDLE  The handle is invalid 

MCARD_E_PROTOCOL_MISMATCH Protocol error while connecting to card 

MCARD_E_PROTOCOL_ERROR  Protocol error during card access 

MCARD_E_CHAL_RESP_FAILED Challenge response failed 

MCARD_E_INVALID_MEMORY_RANGE Invalid memory range 

MCARD_E_INVALID_MEMORY_ZONE_ID Specified memory zone ID is invalid for current card 

MCARD_E_INVALID_PIN_ID Specified PIN ID is invalid for current card 

MCARD_E_INVALID_CHAL_RESP_ID  Specified challenge/response ID is invalid for 
current card 

MCARD_E_ERASURE_NEEDED  Erasure to be done before this write 

MCARD_E_BITORDER_CHANGED Bit Order Changed from default 

MCARD_W_NOT_ALL_DATA_READ Could not read all data from card 

MCARD_W_NOT_ALL_DATA_WRITTEN Could not write all data to card 

MCARD_W_PIN_VERIFY_NEEDED PIN must be verified before access is possible 

MCARD_W_PIN_VERIFY_FAILED PIN verification failed 

MCARD_W_NO_PIN_ATTEMPTS_LEFT No PIN verification attempts left, card probably 
locked 



 

   

MCARD_W_NO_UNITS_TO_DECREMENT  No units left in the card to decrement 

MCARD_W_REMOVED_CARD  The card has been removed 

MCARD_W_TIMEOUT  Timeout occurred 

MCARD_W_ABORTED Command Aborted 

MCARD_W_PROTECTED_AREA Can not write into protected area 

10.2 Memory cards supported 
 

Card Type  Value Cards covered 

MCARDTYPE_UNKNOWN 0x00 None 

MCARDTYPE_SLE4406 0x01 SLE4406, SLE4406E, SLE4406S, 
SLE4406SE from Infineon  

MCARDTYPE_SLE4418 0x02 SLE4418 from Infineon 

MCARDTYPE_SLE4428 0x03 SLE4428 from Infineon 
Primflex Store8K from Schlumberger 

MCARDTYPE_SLE4432 0x04 SLE4432 from Infineon 

MCARDTYPE_SLE4436 0x05 SLE4436, SLE4436E from Infineon 

MCARDTYPE_SLE4442 0x06 SLE4442 from Infineon 
Primeflex Store2K from Sclumberger 

MCARDTYPE_SLE5536 0x07 SLE5536, SLE5536E from Infineon 

MCARDTYPE_AT24C01ASC 0x08 AT24SC01ASC from ATMEL  

MCARDTYPE_AT24C02SC 0x09 AT24C02SC  from ATMEL  

MCARDTYPE_AT24C04SC 0x0A AT24C04SC  from ATMEL  

MCARDTYPE_AT24C08SC 0x0B AT24C08SC  from ATMEL  

MCARDTYPE_AT24C16SC 0x0C AT24C16SC  from ATMEL  

MCARDTYPE_AT24C32SC 0x0D AT24C32SC  from ATMEL  

MCARDTYPE_AT24C64SC 0x0E AT24C64SC  from ATMEL  

MCARDTYPE_AT24C128SC 0x0F AT24C128SC from ATMEL 

MCARDTYPE_AT24C256SC 0x10 AT24C256SC from ATMEL 

MCARDTYPE_AT24C512SC 0x11 AT24C512SC from ATMEL 

MCARDTYPE_AT88SC153 0x12 AT88SC153 from ATMEL  

MCARDTYPE_AT88SC1608 0x13 AT88SC1608 from ATMEL  

MCARDTYPE_SLE4404 0x14 SLE4404 from Infineon 

 
 
 
 
 
 
 
 



 

   

 
 

10.3 Zone IDs 
In the MCard API set, reference to Memory card zone is present in many APIs.  
 
Most of the cards have just one zone with Zone ID ‘0’ – SLE4406, SLE4418, SLE4428, SLE4432, 
SLE36, SLE4442, SLE5536, AT24x series. 
 
The AT88SC153 card has 4 zones  

• Zone ID 0  –  Configuration zone 
• Zone ID 1 – 3 –  3 User Zones  

 
The AT88SC1608 card has 9 zones 

• Zone ID 0  –  Configuration zone 
• Zone ID 1 – 9 –  8 User Zones  

 
 

10.4  PIN IDs 
 
All the AT24x series of cards the SLE4418  and SLE4432 do not have any PIN security. 
 
 
The SLE4406, SLE4436 and the SLE5536  have transport PINs with PIN ID ‘0’. 
 
 
The AT88SC153 has two set  of READ/WRITE PINs (a total of 4 PINs). 

• PIN ID 0  – WRITE PIN of Set 0 
• PIN ID 1  – WRITE PIN of Set 1 
• PIN ID 2  – READ PIN of Set 0  
• PIN ID 3  – READ PIN of Set 1  

 
 
The AT88SC1608 has eight set of READ/WRITE PINs (a total of 16 PINs).  

• PIN ID 0  – WRITE PIN  of Set 0 
• PIN ID 1  – WRITE PIN of Set 1 
• PIN ID 2  – WRITE PIN of Set 2 
• PIN ID 3  – WRITE PIN of Set 3 
• PIN ID 4  – WRITE PIN of Set 4 
• PIN ID 5  – WRITE PIN of Set 5 
• PIN ID 6  – WRITE PIN of Set 6 
• PIN ID 7  – WRITE PIN of Set 7 
• PIN ID 8  – READ PIN of Set 0  
• PIN ID 9  – READ PIN of Set 1  
• PIN ID 10  – READ PIN of Set 2  
• PIN ID 11  – READ PIN of Set 3  
• PIN ID 12 – READ PIN of Set 4  
• PIN ID 13 – READ PIN of Set 5  
• PIN ID 14 – READ PIN of Set 6  
• PIN ID 15 – READ PIN of Set 7  
 

The SLE4404 card has two set of PINS 
 PIN ID 0 -READ/WRITE protection for protected area (scratchpad/user memory) 
 PIN ID 1 -that denotes the number of times the user memory can be erased.



 

   

 

11.0 Annex B 
 
This annex describes in detail the characteristics of a few memory cards. The document also 
highlights the differences between the memory cards, on various attributes. The purpose of the 
document is to give an insight into the various features available in the different memory cards.  

11.1 Memory card standards 
The ISO 7816-10 describes two types of memory cards based on the contacts used. But most of the 
memory cards in the market have vendor defined standards. So memory cards vary in memory sizes, 
security features, zones, speed and complexity. 

11.2 Memory card protocols 
Since the memory cards do not follow a single standard the protocols used to interface them also 
differs from card to card. However they can be classified broadly as  
 

• 2 – Wire Protocol 
• 3 – Wire Protocol 
• IIC Protocol 
• Bit Protocol 

11.2.1 Two-Wire protocol 
In the 2-Wire protocol, apart from VCC, which is used to power the card, two other lines (CLOCK and 
I/O) are used for the interfacing. The RST line in the 2 – Wire cards are usually meant for aborting the 
command at any point of time. Otherwise the RST is maintained in the LOW state during normal 
processing. 
 
There are definite steps called Start/Stop conditions which need to be followed when sending 
commands to a 2 – Wire protocol card. 
  

11.2.2 Three-Wire protocol 
The 3 – Wire protocol cards use a third line (RST) in addition to the two lines used by the 2 – Wire 
cards. The RST is maintained in the logical HIGH state during a command transfer to the card. During 
any other time it is maintained in the logical LOW state.  
 
Similar to the 2 – Wire cards, the 3 – Wire cards also have a specific Start/Stop condition. 
 

11.2.3 IIC protocol 
This protocol is also similar to the 2 – Wire protocol considering the lines involved in interfacing the 
card. However these cards require an “ACK” sequence. The card expects an ‘ACK’ from the reader 
after it has transferred a byte. Similarly if the card successfully receives a byte from the reader it will 
acknowledge it with the ‘ACK’. The ‘ACK’ is usually a bit ‘0’ transfer. 
 
 

11.2.4 Bit level protocol 
The protocol is known as bit level protocol as every pulse to the card will output the bit present in the 
internal address at that time. Also the address will increment to the next location, so that on the next 
clock pulse the bit at that address is output. The counter cards (used as phone cards) are 
implemented with this protocol. 
 



 

   

11.3 Special features in various memory cards 
 

11.3.1 SLE 4432 
 
Attribute Value 
Protocol 2 – Wire 
Manufacturer Infineon 
Total Memory size 256 bytes of byte organized memory 
Zones  1 
PINs 0 
Other Variants Not known 

  

Permanent Write Protection 
The card supports permanent write p rotection mechanism for its first 32 bytes. The write protection 
status can be got at any time by reading the 32 protection bits which correspond each to the first 32 
bytes in the card’s memory. Once set the protect bits cannot be reset. 
The MCardSetMemoryWriteProtection API in the DLL supports this feature. 

11.3.2 SLE 4442  
 
Attribute Value 
Protocol 2 – Wire 
Manufacturer Infineon 
Total Memory size 256 bytes of byte organized memory 
Zones  1 
PINs 1 
Other Variants Schlumberger PrimeFlex Store 2K / ISSI 2k 

 
The card is the secure version of the SLE 4432. 
 

Permanent Write Protection 
The card supports permanent write protection mechanism for its first 32 bytes similar to the SLE4432.  
This feature is supported by the MCardSetMemoryWriteProtection API in the DLL 

PIN security 
The PIN is a 3 byte security code given to the card user. This PIN has to be verified to perform any 
type of write activity. There are 3 retries for the PIN verification after which the card will be 
permanently write protected and of no use.  
 
Once the PIN is verified the number of retries is reset back to three. This feature is supported by the 
MCardVerifyPIN API in the DLL 
 
The PIN once verified can be changed to any three byte number. This feature is supported by the 
MCardChangePIN API in the  DLL. PIN verification is valid for the current card session. 



 

   

11.3.3 SLE 4418  
 
Attribute Value 
Protocol 3 – Wire 
Manufacturer Infineon 
Total Memory size 1024 bytes of byte organized memory 
Zones  1 
PINs 0 
Other Variants Not known 

 

Permanent Write Protection 
The card supports permanent write protection mechanism for all its 1024 bytes. This is accomplished 
by having 1024 protect bits each of which can be individually set and which correspond directly to the 
1024 bytes of the card. This feature is supported by the MCardSetMemoryWriteProtection  API in 
the DLL . The protection feature is irreversible similar to SLE4432/42.  
 

11.3.4 SLE 4428  
 
Attribute Value 
Protocol 3 – Wire 
Manufacturer Infineon 
Total Memory size 1024 bytes of byte organized memory 
Zones  1 
PINs 1 
Other Variants Not known 

 

Permanent Write Protection 
The card supports permanent write protection mechanism for all its 1024 bytes similar to SLE4418. 
This feature is supported by the MCardSetMemoryWriteProtection API in the DLL.  

PIN security 
The PIN  is a 2 byte security code given to the card user. This PIN has to be verified to perform any 
type of write activity. There are 8 retries for the PIN verification after which the card will be 
permanently write protected and of no use.  
 
Once the PIN is verified the number of retries is reset back to eight. This feature is supported by the 
MCardVerifyPIN API in the DLL 
 
 
The PIN once verified can be changed to any two byte number. This feature is supported by the 
MCardChangePIN API in the DLL . PIN verification is valid for the current card session. 
 
 
 



 

   

11.3.5 AT24C01A / 02 / 04 / 08 / 16 / 32 / 64 / 128 / 256 / 512 
 
Attribute Value 
Protocol IIC 
Manufacturer ATMEL 
Total Memory size 1 / 2 / 4 / 8 / 16 / 32 / 64 / 128 / 256 / 512 K bits 

depending on the card (Byte organised) 
Zones  1 
PINs 0 
Other Variants Some Xicor cards  

 
All these cards are from ATMEL and they differ only in the memory capacity and thereby in the 
number of address bytes required in the command. These cards are plain cards and have no security 
whatsoever. There are no Protect bits or Security codes. They all follow IIC protocol (‘ACK’) 

Random and Sequential Read 
The SLE cards all support only random address READ, which require the address of the byte to be 
read in each READ command.  
 
But all these ATMEL cards support sequential read. In these cards if 100 bytes are to be read which 
are in consecutive addresses, then a random read is done for the first byte and for the remaining 
bytes a single sequential read can be done ( the address need not be mentioned). This is because the 
ATMEL cards internally remember the address and increment it for each read command 
automatically. Thus faster reading is possible. This feature is supported by the normal 
MCardReadMemory API itself. The sequential read is internally handled in the DLL. 
 
Also, during a read operation if a read is attempted beyond the available memory the address roles 
over from the last byte of the card’s entire memory to the first byte (0th address) and reading proceeds 
again from there. 

Page  Write 
Similar to the sequential read, these cards also support a page write (address need to be mentioned 
only once). However the page write is limited by the page size of the card.  
 
The page sizes range from 8 bytes to 128 bytes for these cards. Once the end of the a page is 
reached, the next write will wrap around to the first byte of the same page overwriting the data there.  
This is internally handled by the MCardWriteMemory API itself.  
 
 
 



 

   

11.3.6 AT88SC153 
 
Attribute Value 
Protocol IIC 
Manufacturer ATMEL 
Total Memory size 64 (config) + 3*64 (user) bytes 
Zones  4 
PINs 4 (2 READ and 2 WRITE as 2 sets) 
Other Variants Not Known 

 

Random and Sequential Read 
As an IIC card, this card also has the same Sequential read facility. The normal MCardReadMemory 
API can be used for this. 

Page Write 
Similarly there is the page write concept. The page size of these cards is 8. The normal 
MCardWriteMemory API can be used for this. 
 
 

Multi Zones 

The card has three user zones. The zones can have different access rights. They also can  have 
different passwords (from the available set of two). Such cards have greater scope to be used as multi 
application cards. The APIs MCardReadMemory and MCardWriteMemory internally handle the set 
user zone as per the zone ID given by the ap plication developer. 
 

Two sets of PINs  

The card supports two different sets of PINs. Each set has one READ PIN and one WRITE PIN. Thus 
in effect there are four PINs. The three user zones can refer to any of these two PIN sets. Since we 
have only 2 PIN sets but three user zones, one of the two PIN sets will have to be shared between the 
user zones. The MCardVerifyPIN  and MCardChangePIN can be used to verify and modify the PIN 
sets, the PIN ID distinguishing the PINs in these calls. 
 

Configuration Zone 
The card has a special zone called the configuration zone. This zone contains data which configure 
certain attributes  of the card.  

• Fuses 
The various levels of personalization of the card is controlled by the Fuses present in the 
configuration zone. The fuses can be read any time. Writing of the fuses in allowed only on 
verification of the Write PIN of set 1. (also known as the SECURITY CODE). Writing the fuse is an 
irreversible process and has to be done with care. 



 

   

• Access Registers  
The access registers define the various access rights to the user zones and when such access is 
to be given. There is one byte of access register referring to a user zone. The eight bits in the 
access register decides 

 
o The PIN set for the zone 
o Should the READ PIN be verified before a read is attempted 
o Should the WRITE PIN be verified before a write is attempted 
o Can the zone be written to (modified) 
o Is the zone erase proof (0 to 1 is allowed. 1 to 0 is not) 
o Whether “Challenge – Response” Authentication is required before a READ/WRITE  

 
 
The configuration can be read with MCardReadMemory API and written to using the 
MCardWriteMemory API with the appropriate zone ID. But writing to the configuration zone has to be 
done with care as there are sensitive data within the the zone. 
 

 

Two way Challenge – Response Authentication 
These cards support a two way Challenge/Response sequence. This will enable both the reader and 
the card to authenticate each other. The card has to respond to the random number generated by the 
reader and it will also authenticate the reader by indicating so in its authentication retry counter. 
This can be carried out with the MCardChallengeResponse API. 

 



 

   

 

11.3.7 AT88SC1608 
 
Attribute Value 
Protocol IIC 
Manufacturer ATMEL 
Total Memory size 128 (config) + 8*256 (user) bytes 
Zones  9 
PINs 16 (8 READ and 8 WRITE as 8 sets) 
Other Variants Not Known 

 

Random and Sequential Read 
As an IIC card, this card also has the same Sequential read facility. The normal MCardReadMemory 
API can be used for this. 
 
 

Page Write 
Similarly there is the page write concept. The page size of these cards is 16. The normal 
MCardWriteMemory API can be used for this. 
 
 

Multi Zones 

The card has eight user zones. The zones can have different access rights. They also can  have 
different passwords (from the available set of eight). Such cards have greater scope to be used as 
multi application cards. The APIs MCardReadMemory and MCardWriteMemory internally handle the 
set user zone as per the zone ID given by the application developer. 
 

Eight sets of PINs  

The card supports eight different sets of PINs. Each set has one READ PIN and one WRITE PIN. 
Thus in effect there are sixteen PINs. The eight user zones can refer to any of these eight PIN sets. 
The MCardVerifyPIN and MCardChangePIN  can be used to verify and modify the PIN sets, the PIN 
ID distinguishing the PINs in these calls  
 

Configuration Zone 

The card has a special zone called the configuration zone. This zone contains data which configure 
certain attributes  of the card.  

• Fuses 

The various levels of personalization of the card is controlled by the Fuses present in the 
configuration zone. The fuses can be read any time. Writing of the fuses in allowed only on 
verification of the Write PIN of set 1. (also known as the SECURITY CODE). Writing the fuse is an 
irreversible process and has to be done with care. 



 

   

• Access Registers  
The access registers define the various access rights to the user zones and when such access is 
to be given. There is one byte of access register referring to a user zone. The eight bits in the 
access register decides 

 
o The PIN set for the zone 
o Should the READ PIN be verified before a read is attempted 
o Should the WRITE PIN be verified before a write is attempted 
o Should the authentication be done before the READ/WRITE 

 
The configuration can be read with MCardReadMemory API and written to using the 
MCardWriteMemory API with the appropriate zone ID. But writing to the configuration zone has to be 
done with care as there are sensitive data within the the zone. 

Two way Challenge – Response Authentication 

These cards support a two way Challenge/Response sequence. This will enable both the reader and 
the card to authenticate each other. The card has to respond to the random number generated by the 
reader and it will also authenticate the reader by indicating so in its authentication retry counter. 
This can be carried out with the MCardChallengeResponse API. 
 

 
 



 

   

11.3.8 SLE4406 
 
Attribute Value 
Protocol Bit protocol 
Manufacturer Infineon 
Total Memory size 16 bytes including 5(8-bit) stage counter 
Zones  1 
PINs 1 (Transport code) 
Other Variants Not Known 

 

Phone cards 
These cards are usually used as phone cards. They have a 5 stage counter and they are an abacus 
type of counter.The counters cannot be recharged.  
 
The cards are of use and throw type. There is a hardware fuse mechanism that is permanently blown 
during decrement counter. The counter can be decremented with the MCardDecrementCounter  API. 
 

Secure Challenge – Response Authentication 
These cards support Challenge/Response sequence and hence are considered very secure. So 
freaking such cards is very difficult. The host reader will challenge the card each time with a random 
number and based on the algorithm implemented the card will return the response which can be 
authenticated by the reader. This can be carried out with the MCardChallengeResponse  API. 
 
 

Transport Code Protection 

This card is protected during the transport from the chip manufacturer to the card manufacturer by a 
special code called transport code. The transport code can be verified through the MCardVerifyPIN  
API. 
 
 



 

   

11.3.9 SLE4436 
 
Attribute Value 
Protocol Bit protocol 
Manufacturer Infineon 
Total Memory size 46 bytes including 5(8-bit) stage counter 
Zones  1 
PINs 1 (Transport code) 
Other Variants Not Known 

 

Phone cards 
These cards are usually used as phone cards. They have a 5 stage counter and they are an abacus 
type of counter.The counters cannot be recharged.  
 
The cards are of use and throw type. There is a hardware fuse mechanism that is permanently blown 
during decrement counter. The counter can be decremented with the MCardDecrementCounter  API. 
 

Secure Challenge – Response Authentication 
These cards support Challenge/Response sequence and hence are considered very secure. So 
freaking such cards is very difficult. The host reader will challenge the card each time with a random 
number and based on the algorithm implemented the card will return the response which can be 
authenticated by the reader. This can be carried out with the MCardChallengeResponse  API. 
 
 

Transport Code Protection 
This card is protected during the transport from the chip manufacturer to the card manufacturer by a 
special code called transport code. The transport code can be verified through the MCardVerifyPIN  
API. 
 
 

Counter Backup 
These cards support the counter backup mechanism. This is useful when there is a failure in the 
middle of a decrement operation, in which the decrement has been done but a reload of the lesser 
significant stage has not yet been done. The backup bits indicate this and can be made use of to 
issue the reload later on. The user can read the backup bits through the MCardReadMemory API 
and do the necessary corrective action. 
 



 

   

11.3.10 SLE5536 
 
Attribute Value 
Protocol Bit protocol 
Manufacturer Infineon 
Total Memory size 46 bytes including 5(8-bit) stage counter 
Zones  1 
PINs 1 (Transport code) 
Other Variants Not Known 

 

Phone cards 
These cards are usually used as phone cards. They have a 5 stage counter and they are an abacus 
type of counter.The counters cannot be recharged.  
 
The cards are of use and throw type. There is a hardware fuse mechanism that is permanently blown 
during decrement counter. The counter can be decremented with the MCardDecrementCounter  API. 
 
 

Secure Challenge – Response Authentication 
These cards support Challenge/Response sequence and hence are considered very secure. So 
freaking such cards is very difficult. The host reader will challenge the card each time with a random 
number and based on the algorithm implemented the card will return the response which can be 
authenticated by the reader. This can be carried out with the MCardChallengeResponse  API. 
 
 

Transport Code Protection 
This card is protected during the transport from the chip manufacturer to the card manufacturer by a 
special code called transport code. The transport code can be verified through the MCardVerifyPIN  
API. 
 
 

Counter Backup 
These cards support the counter backup mechanism. This is useful when there is a failure in the 
middle of a decrement operation, in which the decrement has been done but a reload of the  lesser 
significant stage has not yet been done. The backup bits indicate this and can be made use of to 
issue the reload later on. The user can read the backup bits through the MCardReadMemory API 
and do the necessary corrective action. 
 
 

Extended Authentication 
Apart from the normal authentication, these cards support Extended authentication known as the 
Cipher Block Chaining. In extended authentication the result of the previous authentication is 
remembered by the card (stored internally) and used for the subsequent authentication. 
 
This will enable the cards to check that decrement has indeed happenened on the card. The extended 
authentication mode is reverted back to normal upon power reset or addess reset. This can be carried 
out with the MCardChallengeResponse API with a different ChallengeID. 
 

 
 



 

   

11.3.11 SLE4404  
 
Attribute Value 
Protocol Bit protocol 
Manufacturer Infineon 
Total Memory size  52 bytes (including counters) 
Zones  1 
PINs 2 (user code & Memory Code) 
Other Variants Not Known 

 
  
Fuses: 
 
The cards are of use and throw type. There is a hardware fuse mechanism that is permanently blown  
with the MCardWriteMemory API with the arguments offset 0x3e and length 1 with the data buffer to 
be written containing the first byte 0x00. 
The fuse can be read w ith MCardReadMemory API with offset 0x3e and length 1.the byte returned 
will contain the value of fuse in LSB. 
 
Memory Counter : 
 
The SLE4404 card contains a Counter that cannot be decremented using a McardDecrementCounter 
API.It denotes the number of times  the user memory can be erased. 
 
 
 User Code Protection : 
 
This card comes with the user code that has to be verified for writing the contents of scratchpad and 
the user memory area .The bits112/113 configures the user memory as read/write protected 
accordingly (For further details refer the card specification). Modifying those bits (byte 0x0e) will 
change the functionality of the user memory area. The user code can be verified using the 
MCardVerifyPIN API and PIN0. 
 
 
Memory Code Protection : 
 
The memory code verification (PIN 1) has to be done for erasing the contents of the user memory, 
using the MCardVerifyPIN API with pinNumber1. On successful entry of memory code,the user 
memory contents are erased (bits set to 1) and the memory counter is decremented by 1(a bit is 
reset). Even an incorrect entry of memory code will decrement the memory counter and hence the 
number of times the user memory can be erased. Even after the PIN1 trials are exhausted (meaning 
that the user memory cannot be erased), the application can still reset the bits (can still write to the 
remaining area). The memory code cannot/should not be changed using the MCardChangePIN API 
 
 
  

 
 
 

 
 
 
 
 
 
 
 



 

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

<Template Revision   > 



 
  

IND.QM.P1.T1.DT REV 3.3 Page 50 of 52

Printed copies of this document are uncontrolled SCM – Internal Use Only
 

 
 



 
  

IND.QM.P1.T1.DT REV 3.3 Page 51 of 52

Printed copies of this document are uncontrolled SCM – Internal Use Only
 

Contents 

1.0 Introduction.......................................................................................................Error! Bookmark not defined. 

2.0 Reference Documents..................................................................................Error! Bookmark not defined. 

3.0 Terms and Abbreviations............................................................................Error! Bookmark not defined. 

4.0 Heading 1............................................................................................................Error! Bookmark not defined. 
4.1 Heading 2.....................................................................................................Error! Bookmark not defined. 

4.1.1  Heading 3............................................................................................Error! Bookmark not defined. 
4.1.1.1 Heading 4...............................................................................................Error! Bookmark not defined. 

 
 

 



 
  

IND.QM.P1.T1.DT REV 3.3 Page 52 of 52

Printed copies of this document are uncontrolled SCM – Internal Use Only
 

  


