
 USB-CCID Smart Card Reader/Writers
R-Series Products

Reference Manual

Reference Manual for

Hirsch R-Series
Smart Card Reader Writer

Products

SCR3310 V2

SCR3500 Family

uTrust 2700 R

uTrust 2500 R & R EE

 USB-CCID Smart Card Reader/Writers
R-Series Products

Reference Manual

Abstract
This document contains in-depth information about the software features of the uTrust R based
smart card reader / writer products.

Audience
This document is intended for system integrators and software developers.

Revision History

Rev. Date Description

1.0 2022-05-19 First published external
version

Information
For additional information, please visit http://www.hirschsecure.com/

http://www.identiv.com/

 USB-CCID Smart Card Reader/Writers
R-Series Products

Reference Manual

Table of Contents

1. LEGAL INFORMATION 6

1.1. Disclaimers 6

1.2. Licenses 6

1.3. Trademarks 6

2. INTRODUCTION TO THE MANUAL 7

2.1. Objective of the manual 7

2.2. Target audience 7

2.3. Product version corresponding to the manual 7

2.4. Definition of various terms and acronyms 8

2.5. References 9

2.6. Conventions for bits and bytes 10

3. GENERAL INFORMATION ABOUT UTRUST 103.1. uTrust 113.2. uTrust
113.3. uTrust 1111

3.5.1. General 13
3.5.2. Applications provided by 11
4. UTRUST 114.1. uTrust Error! Bookmark not defined.4.1.1. Block
diagram 14
4.1.2. Software architecture 15

4.2. Quick reference data 16

4.2.1. uTrust 134.2.2. LED behavior 16
4.2.3. Other data 17

4.2.3.1. General 17

4.2.3.2. USB 17

4.2.3.3. Card interface 18

5. SOFTWARE MODULES 19

5.1. Installation 19

5.2. Utilities 19

5.3. Driver 19

5.3.1. uTrust 155.3.2. Supported operating systems 20
5.4. CT-API 20

5.5. MCard-API 20

5.6. Firmware 21

5.6.1. CCID transport protocol 21
5.6.1.1. CCID class requests supported 21

5.6.1.2. CCID messages supported 21

5.6.1.3. CCID Error Codes 21

 USB-CCID Smart Card Reader/Writers
R-Series Products

Reference Manual

 USB-CCID Smart Card Reader/Writers
R-Series Products

Reference Manual

Legal information

Disclaimers
The content published in this document is believed to be accurate. However, Hirsch does not
provide any representation or warranty regarding the accuracy or completeness of its content, or
regarding the consequences of your use of the information contained herein.

Hirsch reserves the right to change the content of this document without prior notice. The content
of this document supersedes the content of any previous versions of the same document. This
document may contain application descriptions and/or source code examples, which are for
illustrative purposes only. Hirsch gives no representation or warranty that such descriptions or
examples are suitable for the application that you may want to use them for.

Should you notice any problems with this document, please provide your feedback to
support@hirschsecure.com.

Licenses
If the document contains source code examples, they are provided for illustrative purposes only
and subject to the following restrictions:

● You MAY at your own risk use or modify the source code provided in the document in
applications you may develop. You MAY distribute those applications ONLY in the form
of compiled applications.

● You MAY NOT copy or distribute parts of or the entire source code without prior written
consent from Hirsch.

● You MAY NOT combine or distribute the source code provided with Open Source
Software or with software developed using Open Source Software in a manner that
subjects the source code or any portion thereof to any license obligations of such Open
Source Software.

If the document contains technical drawings related to Hirsch products, they are provided for
documentation purposes only. Hirsch does not grant you any license to its designs.

Trademarks, logos and brand names
All trademarks, logos, and brand names are the property of their respective owners.

mailto:support@identiv.com

 USB-CCID Smart Card Reader/Writers
R-Series Products

Reference Manual

Concerned R-Series Products

o SCR3310 V2

o

o uTrust 2500 R

o uTrust 2500 R EE
o

o uTrust 2700 R

o

o SCR3500 Family

USB-A, USB-B, and USB-C

o

o

 USB-CCID Smart Card Reader/Writers
R-Series Products

Reference Manual

Objective of the manual and target audience

The manual targets solution providers. It assumes knowledge about ISO/IEC 7816 and commonly
used engineering terms.

This manual provides details of the Firmware features of the SCR3310V2, uTrust 2700 R and
SCR3500 Smartfold family smart card reader/writer products and targets application developers.

Definition of various terms and acronyms

Term Expansion

APDU Application Protocol Data Unit

ATR Answer to Reset, defined in ISO/IEC 7816

Byte Group of 8 bits

CCID Chip Card Interface Device

CID Card Identifier

ESD Electrostatic Discharge

LED Light emitting diode

NA Not applicable

NAD Node Address

Nibble Group of 4 bits. 1 digit of the hexadecimal representation of a byte.

Example: 0xA3 is represented in binary as (10100011)b. The least
significant nibble is 0x3 or (0011)b and the most significant nibble is 0xA or
(1010)b

PC/SC Personal Computer/Smart Card: is an interoperability standard ensuring
the communication between computers and smartcards

PID Product ID - is a unique number that helps identify a hardware product

RFU Reserved for future use

USB Universal Serial Bus

VID Vendor ID - is a unique 32-bit number identifying the manufacturer of a
product

(xyz)b Binary notation of a number x, y, z ∈{0,1}

 USB-CCID Smart Card Reader/Writers
R-Series Products

Reference Manual

0xYY The byte value YY is represented in hexadecimal

 USB-CCID Smart Card Reader/Writers
R-Series Products

Reference Manual

References

Doc ref in
the manual

Description Issuer

ISO/IEC
7816-3

Identification cards - Integrated circuit cards - Part 3:
Cards with contacts — Electrical interface and
transmission protocols

ISO / IEC

ISO/IEC
7816-4

Identification cards - Integrated circuit cards - Part 4:
Organization, security and commands for interchange

ISO / IEC

PC/SC Interoperability Specification for ICCs and Personal
Computer Systems v2.01.14

PC/SC
Workgroup

CCID Specification for Integrated Circuit(s) Cards Interface
Devices 1.1

USB-IF

USB Universal Serial Bus Specification 2.0 USB-IF

 USB-CCID Smart Card Reader/Writers
R-Series Products

Reference Manual

Conventions for bits and bytes

Bits are represented by a lower case ‘b’ followed by an ordering digit which indicates its position.

Bytes are represented by an upper case ‘B’ followed by one or more ordering digits which indicate
its position.

Bit and Byte representation

Example: 163 decimal number representation

DECIMAL HEXADECIMAL BINARY

163 0xA3 10100011

least significant nibble 0x3 0011

most significant nibble 0xA 1010

 USB-CCID Smart Card Reader/Writers
R-Series Products

Reference Manual

General information about R type products

Common Key features

▪ ISO/IEC 7816 compliant smart card reader/writer

▪ PC/SC v2.0 compliant

▪ 249 bytes of non-volatile user memory

Applications

General

Hirsch smart card reader/writer products interface a personal computer host application
supporting PC/SC interface with smart cards according to ISO/IEC 7816 as well as with
synchronous memory cards like CAC and PKI cards or banking cards and health insurance cards.
The reader firmware is handling the communication protocol but not the application related to the
credential. The application-specific logic has to be implemented by software developers on the
host.

Applications provided by Hirsch

Hirsch does not provide PKI or CAC applications. Hirsch only provides a few applications for
development, test and evaluation purposes that function with its smart card reader/writers.
Developer tools can be found on the Hirsch support page.

 USB-CCID Smart Card Reader/Writers
R-Series Products

Reference Manual

R-Series High Level Architecture

The R-Series devices offer the following interfaces.

▪ LED user interface for reader/writer status indication
▪ Contact smart card interface
▪ USB-CCID host interface The link between R series products and the host is the USB-

CCID interface providing both the power and the communication channel. The device
Microcontroller contains the firmware developed by Hirsch and handles the
communication between the host application and the inserted credential as well as the
user interface.

Software architecture
The Hirsch R-Series smart card reader/writers leverage a PC/SC CCID driver which is available
for Windows, macOS X and Linux operating systems.
Applications can interface with the driver directly through the PC/SC interface.

With the diverse distributed Linux derivatives, there may be distribution specific drivers that
should get installed using the install mechanism of the used Linux distribution.

If there is no driver available, a CCID Linux driver may be downloaded from the webpage of the
maintainer, Ludovic Rousseau, https://ccid.apdu.fr/ or here at Debian .
Additionally, Hirsch provides a proprietary driver for all the supported OSs.

Hirsch drivers can be downloaded from the product support page:
https://support.hirschsecure.com/

https://ccid.apdu.fr/
https://packages.debian.org/search?keywords=libccid
https://support.identiv.com/

 USB-CCID Smart Card Reader/Writers
R-Series Products

Reference Manual

LED behavior

Depends on the chosen product of the R-Series. Either a single or a bi-color LEDs is available.

SCR3310 V2, SCR3500 SmartFold LED Single color

Reader powered, card out OFF

Reader powered, card in but not powered OFF

Card powered ON

Card access Blinking: 500ms ON / 500ms OFF

Error condition Blinking: 100ms ON / 100ms OFF

uTrust 2500 R/R EE , uTrust 2700 R LED Bi-color

Reader powered, no card inserted OFF

Reader powered, card inserted, not powered OFF

Card powered ON

Card access
LED1 yellow/green
Blinking: 500ms ON / 500ms OFF

Error condition
LED2 red
Blinking: 100ms ON / 100ms OFF

USB related information

Parameter Description / Value

USB Bus powered

USB specification USB 2.0 Full Speed

USB Speed Full Speed Device (12Mbit/s)

USB Device Class = CCID PID VID

SCR3310 V2 0x5116 0x04E6

uTrust 2500 R xx 0x5710 0x04E6

uTrust 2700 R 0x5810 0x04E6

SCR3500 USB-C 0x581D 0x04E6

SCR3500 USB-A 0x581C 0x04E6

 USB-CCID Smart Card Reader/Writers
R-Series Products

Reference Manual

Smart Card interface

Parameter Description / Value

Smart card operating frequency up to 12MHz

Maximum supported card baud-
rate

600Kbps

Cards supported
Class A, B and C asynchronous smart cards with
T=0 or T=1 protocol

Synchronous smart cards (2wire, 3wire, I²C)

ISO/IEC 7816 compliant Yes

EMV 4.2 compliant Yes

CT-API compliant Yes

Number of slots Single ID-1 smart card slot

Ejection mechanism Manual

Software modules

Installation
On Operating Systems with a PC/SC USB-CCID driver preinstalled, no installation is necessary.

Where there’s no PC/SC CCID driver preinstalled (Linux systems) the driver has to be installed
using a distribution specific measures or installed using the available source packages.

Utilities and Diagnostic Tools for Smart Card Readers

Description
Operating
System

Smart PC/SC Diagnostic
This utility enables to check card reader configuration and create a log
file.

Windows All Download

Fix PC/SC Resource Manager
This tool repairs a damaged PC/SC Resource Manager.

Up to Windows 7 Download

TestResMan
This utility enables testing the PC/SC Resource Manager in Windows.

Windows All Download

TestResMan
This utility enables testing the PC/SC API (pcsc-lite) in Linux.

Linux Download

CT-API test utility
This utility provides a test scenario for the CT-API for Linux

Linux Download

CT-API test utility
This utility provides a test scenario for the CT-API for Mac OS X

Mac OS X Download

Commented [1]: Need to be moved to Hirsch database and
links updated.

Commented [2]: Need to be moved to Hirsch database and
links updated.

Commented [3]: Need to be moved to Hirsch database and
links updated.

Commented [4]: Need to be moved to Hirsch database and
links updated.

Commented [5]: Need to be moved to Hirsch database and
links updated.

Commented [6]: Need to be moved to Hirsch database and
links updated.

https://files.identiv.com/products/smart-card-readers/utilities-diagnostic-tools/SmartPCSCDiag_V2.09.zip
https://files.identiv.com/products/smart-card-readers/utilities-diagnostic-tools/fixPCSC_V1.3.0.54.zip
https://files.identiv.com/products/smart-card-readers/utilities-diagnostic-tools/TestResMan_V1.47.zip
https://files.identiv.com/products/smart-card-readers/utilities-diagnostic-tools/LinTResman2_1_0.tar.gz
https://files.identiv.com/products/smart-card-readers/utilities-diagnostic-tools/linux_testct32_v1.0.2.tar.gz
https://files.identiv.com/products/smart-card-readers/utilities-diagnostic-tools/mac_testct32_v1.0.2.tar.gz

 USB-CCID Smart Card Reader/Writers
R-Series Products

Reference Manual

USB CCID Driver

USB device listing

PC/SC applications name can be one of the following depending on the reader model. However,
the names could change depending on the driver used (on Windows) or the name listed against
the device in the Info.plist file. The recommended way for applications and middleware to work
consistently is to issue a SCardListReaders() call and pull the IFD name from the result.

Identiv uTrust 2500 (R or R-EE) Smart Card Reader

Identiv uTrust 2700 R Smart Card Reader

Identive uTrust 2700 R Smart Card Reader

SCM Microsystems SCR3310 Smart Card Reader

Supported operating systems

See previous chapter and consult website and latest data sheets for up to date information.

https://www.hirschsecure.com/products/identity-smart-card-readers

 USB-CCID Smart Card Reader/Writers
R-Series Products

Reference Manual

CT-API
A CT-API interface that mostly is used in German banking applications and in conjunction with
health insurance cards, is available for the reader.

MCard-API
With this proprietary Hirsch API, it is possible to access a vast majority of synchronous memory
cards.

Supported memory cards

SLE4404 SLE4428 SLE4432 SLE4436 SLE6636 SLE4442

SLE5532 SLE5536 SLE5542 AT24C01ASC AT24C02SC AT24C04SC

AT24C08SC AT24C16SC AT24C32SC AT24C64SC AT24C128SC AT24C256SC

AT24C512SC AT88SC153 AT88SC1608 ST14C02

Firmware

CCID transport protocol

The R-series product firmware implements a transport protocol that is compliant with USB
Device Class: Smart Card CCID Specification for Integrated Circuit(s) Cards Interface
Devices Revision 1.10. This paragraph describes the CCID specification features that are
implemented.

Supported CCID class requests

Abort

Supported CCID messages

The following CCID messages are supported for the contact interface when received through
bulk-out endpoint.

PC_to_RDR_IccPowerOn PC_to_RDR_IccPowerOff PC_to_RDR_GetSlotStatus

PC_to_RDR_XfrBlock PC_to_RDR_GetParameters PC_to_RDR_SetParameters

PC_to_RDR_Escape PC_to_RDR_Abort PC_to_RDR_NotifySlotChange

PC_to_RDR_ResetParameters PC_to_RDR_T0APDU PC_to_RDR_SetDatarateAndClo
ckFrequency

 USB-CCID Smart Card Reader/Writers
R-Series Products

Reference Manual

CCID Error Codes

Extensive error codes are reported on many conditions during all CCID responses.
Most of the error messages are reported by the CCID appropriately.
Some of the main error codes for the contact interface are listed below.

HW_ERROR XFR_PARITY_ERROR ICC_PROTOCOL_NOT_SUPPORTED

BAD_ATR_TS BAD_ATR_TCK ICC_MUTE

CMD_ABORTED Command not supported

The following subsections discuss when and why these error codes are returned:

HW_ERROR
This error code is returned when a hardware short circuit
condition is detected, during application of power to the card
or if any other internal hardware error is detected.

XFR_PARITY_ERROR
This error code is returned when a parity error condition is
detected. This error will be reported in the response to a
PC_to_RDR_XfrBlock message.

ICC_PROTOCOL_NOT_SUPPORTED
This error code is returned if the card is signaling to use a
protocol other than T=0 or T=1 in its ATR.

BAD_ATR_TS
This error code is returned if the initial character of the ATR
contains invalid data.

BAD_ATR_TCK
This error code is returned if the check character of the ATR
contains is invalid.

ICC_MUTE

This error code is returned when the card does not respond
until the reader timeout occurs. This error will be reported in
the response to PC_to_RDR_XfrBlock message and
PC_to_RDR_IccPowerOn messages.

CMD_ABORTED
This error code is returned if the command issued has been
aborted by the control pipe.

Command not supported
This error would be returned, if the command would not be
supported by the reader.

 USB-CCID Smart Card Reader/Writers
R-Series Products

Reference Manual

Commands description

Escape commands for the uTrust R-Series

Sending Escape commands to uTrust R

A developer can use the following method to send Escape commands to uTrust R products

● SCardControl method defined in PC/SC API

In Windows, in order to be able to send Escape commands to the uTrust R product series,
the feature has to be enabled by setting a REG_DWORD value named
‘EscapeCommandEnable’ in the registry to a value of ‘1’.

For Windows XP and Windows Vista, the key to hold the value would be
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Enum\USB\VID_04E6&PID_5810\
Device-Instance-xxxx \Device Parameters

For Windows 7, Windows 8.1, Windows 10, Win11
KEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Enum\USB\VID_04E6&PID_5810\De
vice-Instance-xxxx \Device Parameters\WUDFUsbccidDriver

Device-Instance-xxxx has got to be equal to the serial number of the reader used, so this
modification has got to be made for every physical reader intended to be used on the machine
in question. The reader has got to be plugged in at least once for the mentioned key to exist
and the driver has got to be restarted for this setting to take effect. (Unplug and replug the
reader).

To be able to work with synchronous memory cards using our MCard API, the same setting
will have to be established.

See appendix B for some sample code sending Escape commands to the reader.

 USB-CCID Smart Card Reader/Writers
R-Series Products

Reference Manual

Escape command codes
Escape commands can be used by an application to configure uTrust xxxx R to function in a
mode that is not its default configured mode or to get specific information. To put the uTrust
R product back into its default mode, it either has to be unplugged and plugged again or the
application can send the same Escape command again.

The following Escape commands are supported by uTrust R series products:

Escape command Code

READER_SETMODE 0x01

READER_GETMODE 0x02

CONTACT_GET_SET_POWERUPSEQUENCE 0x04

CONTACT_EMV_LOOPBACK 0x05

CONTACT_EMV_SINGLEMODE 0x06

CONTACT_APDU_TRANSFER 0x08

CONTACT_CONTROL_PPS 0x0F

CONTACT_EXCHANGE_RAW 0x10

READER_GETIFDTYPE 0x12

READER_LED_CONTROL 0x19

READER_LED_CONTROL_BY_FW 0xB2

READER_GETINFO_EXTENDED 0X1E

CONTACT_GET_SET_CLK_FREQUENCY 0x1F

CONTACT_GET_SET_ETU 0x80

CONTACT_GET_SET_WAITTIME 0x81

CONTACT_GET_SET_GUARDTIME 0x82

CONTACT_GET_SET_MCARD_TIMEOUT 0x85

CONTACT_CONTROL_ATR_VALIDATION 0x88

 USB-CCID Smart Card Reader/Writers
R-Series Products

Reference Manual

READER_SETMODE
This Escape command sets the current mode of the reader. Applications may call this
function, to set the desired mode. Typically, this call is used to switch between the ISO/IEC
7816, EMV and memory card operations. Upon power on, the reader will reset to the default
ISO/IEC 7816 mode.

Input: The first byte of the input buffer contains the Escape code value and the second one
will contain the value for the desired mode of operation. The output buffer field will be NULL.

Byte0 Byte1
Escape code (0x01) Mode

The following table gives the value of modes as interpreted by the firmware:

Mode Value Remarks
ISO 0x00 ISO/IEC 7816 mode

EMV 0x01 EMV

Synchronous 0x02 memory card mode (Synchronous)

ISO mode uses APDU mode of data transfer and is used for normal operations. This is the
default mode of the reader upon power up.

EMV mode also uses APDU mode of data transfer and is used for EMV test purposes. This
mode has more stringent checks for smart card detection and communication as per EMV4.2
spec.

Synchronous mode is used for communicating only with memory cards. Any other value
sent as mode is invalid.
Output buffer

Output buffer

NULL

READER_GETMODE
This Escape command may be used to retrieve the current mode of the reader.

The input buffer is

Byte0
Escape code(0x02)

Output: Current active reader mode will be returned as a BYTE value as is interpreted by
reader firmware as follows

Mode Value Remarks

ISO 0x00 ISO/IEC 7816 mode

EMV 0x01 EMV

Synchronous 0x02 memory card mode (synchronous)

 USB-CCID Smart Card Reader/Writers
R-Series Products

Reference Manual

CONTACT_GET_SET_POWER_UP_SEQUENCE
This Escape command is used by the application/driver to get/set the following parameters:

● Smart card Power-on sequence
● Delay between successive Activation retries
● Enable/Disable any Voltage Class

As soon as card insertion is detected and power on message is received from the host, the
firmware will start activation with the configured voltage sequence. If the activation fails, it will
wait for the configured activation delay and then retry with the next enabled voltage class. If
power up succeeds at an operating voltage, the firmware will continue card communication
at that voltage. If power up fails in all the enabled operating voltages, then the firmware will
report an error. The default power-up sequence would be A – B – C.

 Input: The first byte of the input buffer contains the Escape code. The next byte contains
the function to be performed. The third byte contains the parameter for the function.

Byte0
Byte1

Byte2
Value Description

Escape
code

(0x04)

0x00
Starts with Class C voltage.

 (1.8V – 3V – 5V order)
-

0x01
Starts with Class A voltage.
(5V – 3V – 1.8V order)

-

0x08 Time delay between resets Delay value in milliseconds

0x09 Enable/Disable a Voltage Class

Bit Map of all Voltage Classes
[Bit0 – Class A; Bit1 – Class B; Bit2 –
Class C]
Set bit to enable the Voltage class
Clear bit to disable the Voltage class

0xFE Retrieves all the above values -

 0xFF
Retrieves the current Power up
sequence

-

Output:
For retrieving all settings (0xFE), the output will be the following:

Byte0
Byte 1 Byte2

Value Description

0x00
Starts with Class C voltage. (1.8V

– 3V – 5V order) Time delay between resets
in milliseconds

Bit Map of all Voltage
Classes

[Bit0 – Class A; Bit1 – Class
B; Bit2 – Class C]

0x01
Starts with Class A voltage. (5V –

3V – 1.8V order)

For retrieving current power up sequence (0xFF), the output will be:
Byte0

Value Description

0x00 Starts with Class C voltage. (1.8V – 3V – 5V order)

0x01 Starts with Class A voltage. (5V – 3V – 1.8V order)

Example: retrieve all the current settings:
DataIn = 04 FE
DataOut: 01 0A 07 (3 bytes)

00: Starting with Class A
0A: 10ms delay between resets
07: Class A, B, and C enabled

 USB-CCID Smart Card Reader/Writers
R-Series Products

Reference Manual

CONTACT_EMV_LOOPBACK
This Escape command lets the host force the firmware to perform an EMV Loop-back
application.

The input buffer is
Byte0

Escape code(0x05)

Output buffer

NULL

CONTACT_EMV_SINGLEMODE
This Escape command lets the host perform a one-shot EMV Loop-back application as
specified in the EMV Level 1 Testing Requirements document.

Input:
Byte0

Escape code(0x06)

Output buffer
NULL

CONTACT_APDU_TRANSFER
This Escape command exchanges a short APDU with the smart card. The user has to
ensure that a card is inserted and powered before issuing this Escape command.
This Escape command mostly is used by the MCard API to access synchronous memory
cards.

Input: The input buffer contains the Escape code value followed by the short APDU to be
sent to the card.

Byte0 Byte1 onwards

Escape code(0x08) Short APDU to be sent to card

Output buffer

Response APDU

 USB-CCID Smart Card Reader/Writers
R-Series Products

Reference Manual

CONTACT_CONTROL_PPS
This Escape command enables or disables the PPS done by the firmware/device for smart
cards. This setting will take effect from the next card connect and remains effective till it is
changed again or the next Reader power on. Default mode is PPS enabled.

Input: The first byte of input buffer contains the Escape code and the following byte, if 1
disables the PPS and if 0 enables the PPS.

Byte0 Byte1

Escape
code(0x0F)

PPS control byte (1-DISABLES PPS, 0-ENABLES PPS)

Output buffer

NULL

CONTACT_EXCHANGE_RAW
This Escape command can be used to perform raw exchange of data with the card. The user
must ensure that a card is inserted and powered on before issuing this Escape command.
The Card is deactivated upon any reception error.

Input: The input buffer for this command will contain the Escape code, low byte of the length
of data to be sent, high byte of length of data to be sent, low byte of the length of expected
data, high byte of length of expected data and the command.

Byte0 Byte1 Byte2 Byte3 Byte4 Byte 5 onwards

Escape
code(0x10)

LSB of send
length

MSB of send
length

LSB of expected
length

MSB of
expected

length

Raw data to the
card

Output buffer

Response APDU

READER_GET_IFDTYPE

This Escape command is used to get the current IFD type from the reader.

Input: The first byte of the input buffer contains the Escape code.

Byte0

Escape code(0x12)

Output: The reader returns the PID of the firmware which can be used to identify the reader.

PID value
Description

B0 B1

0x10 0x58 USB PID of Hirsch uTrust 2700 R smart card Reader

 USB-CCID Smart Card Reader/Writers
R-Series Products

Reference Manual

READER_LED_CONTROL
This Escape command may be used to toggle the LED state. LED control by firmware should
be disabled using the Escape command READER_LED_CONTROL_BY_FW to see proper
LED change while using this IOCTL else the LED state will be overwritten by the FW LED
behavior.
Input:The first byte of the input buffer contains the Escape code, followed by the LED number
always set to 0 (just one LED) and then the desired LED state.

Byte0 Byte 1 Byte2

Escape code(0x19) LED number (0 GREEN) LED state (0-OFF, 1-ON)

Output buffer

NULL

READER_LED_CONTROL_BY_FW

This command is used to enable/disable LED control by firmware. Default setting is: LED is
controlled by firmware.
Input: The first byte of the input buffer contains the Escape code. The second byte specifies
if LED control by the firmware should be disabled or enabled. Output buffer NULL.
Byte0 Byte1

Value Description

Escape
code(0xB2)

0 Enable LED Control by firmware

1 Disable LED Control by firmware

Get State FF 0 -- LED control by firmware enabled
1 -- LED control by firmware disabled

Output buffer

NULL
or current state

No response is returned for set state.
For Get State 1 byte response is

received.

 USB-CCID Smart Card Reader/Writers
R-Series Products

Reference Manual

READER_GET_INFO_EXTENDED
This Escape command may be used to retrieve extended information about the reader and
supported features.

Input: The first byte of the input buffer contains the Escape code.

Byte0
Escape code(0x1E)

Output:

The firmware returns data as per structure SCARD_READER_GETINFO_PARAMS_EX
mentioned below. This Escape command is used to get the firmware version, reader
capabilities, and Unicode serial number of the reader.

Field
Size

[Bytes]
Field Name Field Description Default value

1 byMajorVersion Major Version in BCD Based on current
firmware version 1 byMinorVersion Minor Version in BCD

1 bySupportedModes
Total no of supported modes in

the reader
0x03 (ISO, EMV and

MCard modes)

2 wSupportedProtocols

Protocols supported by the
Reader

Bit 0 – T0
Bit 1 – T1

0x0300 (LSB first)

2 winputDevice
IO_DEV_NONE 0x00
IO_DEV_KEYPAD 0x01
IO_DEV_BIOMETRIC 0x02

0x0000(LSB first)

1 byPersonality Reader Personality (Not Used) 0x00

1 byMaxSlots Maximum number of slots 0x01 (Single slot device)

1 bySerialNoLength Serial number length 0x1C

28 bySerialNumber [28] Unicode serial number
Reader serial

number(MSB first)

DataIn = 1E

DataOut: 01 00 03 03 00 00 00 00 01 1C 35 00 33 00 36 00 39 00 31 00 33 00 30 00 31 00 32 00 30
00 30 00 30 00 36 00 32 00 (38 bytes)

 USB-CCID Smart Card Reader/Writers
R-Series Products

Reference Manual

CONTACT_GET_SET_CLK_FREQUENCY
In case when an application wants to get or set the smart card clock frequency, this Escape
command is used to instruct the reader to change the clock or to get the current Clock divisor
used. Once set, the change in frequency will take effect immediately. Default divisor value is
10, that is 4.8MHz.

Input: The first byte of the input buffer will contain the Escape code; the next byte will
contain the clock divisor value to set clock frequency or 0xFF to get clock frequency.
Byte0 Byte1

Value Description

Escape code(0x1F) Clock divisor The value to be set in the smart card CLK divisor register

0xFF Get current Clock divisor value

utput:

Set clock frequency: None

Get clock frequency: One byte value indicating the current Clock divisor.

Output buffer

NULL or current divisor

Clock Divisor values:

Value Frequency

12 4 MHz

10 4.8 MHz

8 6 MHz

7 6.8 MHz

6 8 MHz

5 9.6 MHz

4 12 MHz

3 16 MHz

DataIn = 1F FF
DataOut: 0A (1 byte)

 USB-CCID Smart Card Reader/Writers
R-Series Products

Reference Manual

CONTACT_GET_SET_ETU
This Escape command is used by the HOST to get/set the current ETU for smart cards. Once
set, the new ETU value will take effect immediately.

Input: The input buffer contains the Escape followed by an 8 bit GET/SET identifier. For SET
ETU, a DWORD specifying the value to be set is as follows.

Byte0 Byte1 Byte2 Byte3 Byte4 Byte5

Value Description Wait time

Escape
code(0x80)

0x01 SET ETU BIT31-BIT24 BIT23-BIT16 BIT15-BIT8 BIT7-BIT0

0x00 GET ETU - - - -

tput:
For both Set and Get ETU, the output will be the following.

Byte0 Byte1 Byte2 Byte3

ETU value

BIT31-BIT24 BIT23-BIT16 BIT15-BIT8 BIT7-BIT0

DataIn = 80 00
DataOut: 00 00 01 40 (4 bytes)

CONTACT_GET_SET_WAITTIME
This Escape command is used to get/set the Character/Block Waiting Time for smart cards.
The wait time is specified in terms of ETU. Once set, the new Wait time will take effect from
the next card communication.
Input: The input buffer contains the Escape code followed by an 8 bit GET/SET identifier, an
8 bit Wait time identifier and a 32 bit Wait time value. BWT must be specified in units of
1.25ms and CWT in units of ETU.

Byte0
Byte1 Byte2 Byte3 Byte4 Byte5 Byte6

Value Description Value Description Wait time in ETU

Escape
code(0x81)

0x01
SET Wait

time

0x00 CWT BIT31-
BIT24

BIT23-
BIT16

BIT15-
BIT8

BIT7-
BIT0 0x01 BWT

0x00
GET Wait

time

0x00 CWT
- - - - 0x01 BWT

Output:

For both Get/Set Wait time, the output will be the following.

Byte0 Byte1 Byte2 Byte3

Wait time in ETU

BIT31-BIT24 BIT23-BIT16 BIT15-BIT8 BIT7-BIT0

DataIn = 81 00 01
DataOut: 00 00 03 5D (4 bytes)

 USB-CCID Smart Card Reader/Writers
R-Series Products

Reference Manual

CONTACT_GET_SET_GUARDTIME
This Escape command is used to get/set the Character/Block Guard Time of the reader. The
guard time is specified in terms of ETU. Once set, the new Guard time will take effect
immediately.

Input: The input buffer contains the Escape code followed by an 8 bit GET/SET identifier, an
8 bit guard time identifier and a 32 bit guard time value in ETU.

Byte0
Byte1 Byte2 Byte3 Byte4 Byte5 Byte6

Value Description Value Description Guard time in ETU

Escape
code

(0x82)

0x01 SET Guard
time

0x00 CGT BIT31-
BIT24

BIT23-
BIT16

BIT15-
BIT8

BIT7-
BIT0 0x01 BGT

0x00 GET Guard
time

0x00 CGT - - - -

0x01 BGT

Output:

For Get/Set guard time, the output will be the Character/Block Guard Time value.
Byte0 Byte1 Byte2 Byte3

Character Guard time in ETU

BIT31-BIT24 BIT23-BIT16 BIT15-BIT8 BIT7-BIT0

DataIn = 82 00 01
DataOut: 00 00 00 18 (4 bytes)

CONTACT_GET_SET_MCARD_TIMEOUT
This Escape command is used to get or set the delay which is applied after a Write operation
to memory cards. The delay is specified in milliseconds.
Input: The first byte of the input buffer will contain the Escape code; the next byte will
contain the memory card write delay in seconds.

Byte0
Byte1

Value Description

Escape
code(0x85)

0x01 Delay in milliseconds for memory card Write

Any value other than 1 Read the current applied delay for memory card Write

Output:

Write delay: No response byte
Read delay value: A byte value specifying the current delay applied during memory card
Write in milliseconds

Byte0

Delay in ms

DataIn = 85 00
DataOut: 00 (1 byte)

 USB-CCID Smart Card Reader/Writers
R-Series Products

Reference Manual

CONTACT_CONTROL_ATR_VALIDATION
This Escape command is used to enable or disable the ATR validation by the firmware in
ISO/IEC 7816 mode.
In case the card would emit an ATR that is not ISO/IEC 7816 compliant, the card reader may
fail to power up the card. In these cases, disabling ATR validation will let you work with the
card regardless of ISO conformity of the ATR. By default, ATR validation is enabled.

Input: The first byte of the input buffer will contain the Escape code; the next byte will contain
the control byte.

Byte0 Byte1

Value Description

Escape code(0x88) 0x00 Enable ATR validation

0x01 Disable ATR validation

Output buffer

NULL

Annexes

 A – Status words table

SW1 SW2 Description

0x90 0x00 NO ERROR

0x67 0x00 LENGTH INCORRECT

0x6D 0x00 INVALID INSTRUCTION BYTE

0x6E 0x00 CLASS NOT SUPPORTED

0x6F 0x00 UNKNOWN COMMAND

0x63 0x00 NO INFORMATION GIVEN

0x65 0x81 MEMORY FAILURE

0x68 0x00 CLASS BYTE INCORRECT

0x6A 0x81 FUNCTION NOT SUPPORTED

0x6B 0x00 WRONG PARAMETER P1-P2

 USB-CCID Smart Card Reader/Writers
R-Series Products

Reference Manual

Annex B
Sample code using Escape commands through Escape
IOCTL.

Example for uTrust 2700 R

File Name : uTrust 2700 R Escape.h

#ifndef _uTrust_2700 R_ESCAPE_H_
#define _uTrust_2700 R_ESCAPE_H_

#ifdef _cplusplus
extern "C" {
#endif

pragma pack (1)
 typedef struct {
 BYTE byMajorVersion;
 BYTE byMinorVersion;
 BYTE bySupportedModes;
 WORD wSupportedProtocols;
 WORD winputDevice;
 BYTE byPersonality;
 BYTE byMaxSlots;
 BYTE bySerialNoLength;
 BYTE abySerialNumber[28];
 } ReaderInfoExtended;
pragma pack ()

#define IOCTL_CCID_ESCAPE SCARD_CTL_CODE (0xDAC)
#define READER_SET_MODE 0x01
#define READER_GET_MODE 0x02
#define CONTACT_GET_SET_POWERUPSEQUENCE 0x04
#define CONTACT_EMV_LOOPBACK 0x05
#define CONTACT_EMV_SINGLEMODE 0x06
#define CONTACT_APDU_TRANSFER 0x08
#define CONTACT_CONTROL_PPS 0x0F
#define CONTACT_EXCHANGE_RAW 0x10
#define READER_GETIFDTYPE 0x12
#define READER_LED_CONTROL 0x19
#define READER_LED_CONTROL_BY_FW 0xB2
#define READER_GETINFO_EXTENDED 0x1E
#define CONTACT_GET_SET_CLK_FREQUENCY 0x1F
#define CONTACT_GET_SET_ETU 0x80
#define CONTACT_GET_SET_WAITTIME 0x81
#define CONTACT_GET_SET_GUARDTIME 0x82
#define CONTACT_GET_SET_MCARD_TIMEOUT 0x85
#define CONTACT_CONTROL_ATR_VALIDATION 0x88

#ifdef __cplusplus
}
#endif

#endif

 USB-CCID Smart Card Reader/Writers
R-Series Products

Reference Manual

File Name : uTrust 2700 R Escape.c

#include <windows.h>
#include <winbase.h>
#include <stdio.h>
#include <conio.h>
#include "winscard.h"
#include "winerror.h"
#include "uTrust 2700R Escape.h"

VOID main(VOID)
{
 SCARDCONTEXT ContextHandle;
 SCARDHANDLE CardHandle;
 ReaderInfoExtended strReaderInfo;
 BYTE InByte, i;
 DWORD BytesRead, ActiveProtocol;
 ULONG ret;
 char *ReaderName[] = { "Identiv uTrust 2700 R Smart Card Reader 0",NULL };
/**/
 ContextHandle = -1;
 ret = SCardEstablishContext(SCARD_SCOPE_USER, NULL, NULL, &ContextHandle);
 if (ret == SCARD_S_SUCCESS) {
 ret = SCardConnect(ContextHandle,
 ReaderName[0],
 SCARD_SHARE_DIRECT,
 SCARD_PROTOCOL_UNDEFINED,
 &CardHandle,
 &ActiveProtocol);
 if (ret == SCARD_S_SUCCESS)
 {
 InByte = 0x1E;
 ret = SCardControl(CardHandle,
 IOCTL_CCID_ESCAPE,
 &InByte, 1, &strReaderInfo,sizeof(strReaderInfo), &BytesRead);

if (SCARD_S_SUCCESS == ret) {

printf("major version:\t\t%d%d\n", (strReaderInfo.byMajorVersion & 0xF0)
>> 4, (strReaderInfo.byMajorVersion & 0x0F));
printf("minor version:\t\t%d%d\n", (strReaderInfo.byMinorVersion & 0xF0)
>> 4, (strReaderInfo.byMinorVersion & 0x0F));

 printf("modes:\t\t\t%d\n", strReaderInfo.bySupportedModes);
 printf("protocols:\t\t%04x\n", strReaderInfo.wSupportedProtocols);
 printf("input device:\t\t%04x\n", strReaderInfo.winputDevice);
 printf("personality:\t\t%d\n", strReaderInfo.byPersonality);
 printf("max slots:\t\t%d\n", strReaderInfo.byMaxSlots);
 printf("serial no length:\t%d\n", strReaderInfo.bySerialNoLength);
 printf("serial no:\t\t");
 for (i = 0; i < strReaderInfo.bySerialNoLength; i++)
 printf("%c", strReaderInfo.abySerialNumber[i]);
 }
 else { printf("SCardControl failed: %08X\n", ret);
 }
 }
 else { printf("SCardConnect failed: %08X\n", ret);
 }
 ret = SCardReleaseContext(ContextHandle);
 }
 else {
 printf("\n SCardEstablishContext failed with %.8lX", ret);
 }
 printf("\npress any key to close the test tool\n");
getch();
}

